23 research outputs found
Age-Related Adaptation of Bone-PDL-Tooth Complex: Rattus-Norvegicus as a Model System
Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7±0.1 to 0.9±0.2 GPa) and cementum (0.6±0.1 to 0.8±0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months), followed by a senescent phase (10 to 15 months), from which deviations due to experimentally induced perturbations can be effectively investigated
Incident ischemic heart disease and recent occupational exposure to particulate matter in an aluminum cohort
Fine particulate matter (PM(2.5)) in air pollution, primarily from combustion sources, is recognized as an important risk factor for cardiovascular events but studies of workplace PM(2.5) exposure are rare. We conducted a prospective study of exposure to PM(2.5) and incidence of ischemic heart disease (IHD) in a cohort of 11,966 US aluminum workers. Incident IHD was identified from medical claims data from 1998 to 2008. Quantitative metrics were developed for recent exposure (within the last year) and cumulative exposure; however, we emphasize recent exposure in the absence of interpretable work histories prior to follow-up. IHD was modestly associated with recent PM(2.5) overall. In analysis restricted to recent exposures estimated with the highest confidence, the hazard ratio (HR) increased to 1.78 (95%CI: 1.02, 3.11) in the second quartile and remained elevated. When the analysis was stratified by work process, the HR rose monotonically to 1.5 in both smelter and fabrication facilities, though exposure was almost an order of magnitude higher in smelters. The differential exposure-response may be due to differences in exposure composition or healthy worker survivor effect. These results are consistent with the air pollution and cigarette smoke literature; recent exposure to PM(2.5) in the workplace appears to increase the risk of IHD incidence
Molecular profiling identifies targeted therapy opportunities in pediatric solid cancer
To evaluate the clinical impact of molecular tumor profiling (MTP) with targeted sequencing panel tests, pediatric patients with extracranial solid tumors were enrolled in a prospective observational cohort study at 12 institutions. In the 345-patient analytical population, median age at diagnosis was 12 years (range 0-27.5); 298 patients (86%) had 1 or more alterations with potential for impact on care. Genomic alterations with diagnostic, prognostic or therapeutic significance were present in 61, 16 and 65% of patients, respectively. After return of the results, impact on care included 17 patients with a clarified diagnostic classification and 240 patients with an MTP result that could be used to select molecularly targeted therapy matched to identified alterations (MTT). Of the 29 patients who received MTT, 24% had an objective response or experienced durable clinical benefit; all but 1 of these patients received targeted therapy matched to a gene fusion. Of the diagnostic variants identified in 209 patients, 77% were gene fusions. MTP with targeted panel tests that includes fusion detection has a substantial clinical impact for young patients with solid tumors