20 research outputs found

    Perception of Track and Field Athletes on the Use of Cryotherapy in Injury Management in Ashanti Region of Ghana

    Get PDF
    The use of cryotherapy in injury management (IM) has been widely studied but report on track and field athletes’ (TFAs) perception in Ghana remains scarce. TFAs in Ashanti region of Ghana habitually sustained acute injuries due to competition stressors that typically affect peak performance like in other contact games. Despite been observed that sustained injuries accomplished cryotherapy treatment, TFAs’ visit to non-clinical therapy nonetheless remain prominent. This cross-sectional study therefore documents the perceptions of TFAs on the use cryotherapy in IM. Ninety five [mean age = 22.26±1.10years, 59 (62.1%) males, 36(37.9%) females] TFAs camped at the Babayara Sports stadium Kumasi in preparation for 11th African Games were purposively sampled. Self-structured and validated instrument on the use of cryotherapy in IM was administered to elicit TFAs perceptions. TFAs perceived the use of cryotherapy in IM as significant [F = 788.884, X2 = 404.192, df = 94, p = .000].Gender influence on TFAs perception of use of cryotherapy in IM was not significantly different. Mainstream significantly professed at least a good feeling (79.0%, X2 = 37.000, p = 000) after receiving cryotherapy treatment. As such, attachement of Physical Therapists to the TFAs training sessions in Ashanti region, provision of enabling environment and equipment to enhance effective IM processes through cryotherapy are strategic approaches advocated.

    Evaluation of Allelopathic Activity of Chinese Medicinal Plants and Identification of Shikimic Acid as an Allelochemical from Illicium verum Hook. f.

    No full text
    This study focused on the potential allelopathy of 50 species of Chinese medicinal plants, which are mainly distributed in the Xinjiang Uyghur Autonomous Region, Inner Mongolia, and Yunnan Province. The “sandwich method” was adopted and used for the screening for allelopathic potential among these plant species. Further phytotoxic evaluation of the candidate species was conducted by applying plant extracts to crops and weed species. The results of this study indicated that among the 50 medicinal plant species evaluated, the fruits of Illicium verum Hook. f. (star anise) showed the most significant allelopathic potential through the leaf leachates. Shikimic acid was identified to be the main bioactive compound (about 7% dry weight) in star anise by reversed-phase High Performance Liquid Chromatography (RP-HPLC) analysis. The phytotoxic bioassay indicated that both the crude extract of the Chinese star anise and the synthetic shikimic acid showed strong inhibitory activity on the radicle and hypocotyl growth of lettuce. The radicle growth inhibition of lettuce caused by the crude extract of star anise could be explained by the contribution of the biological activity of shikimic acid. In conclusion, shikimic acid could be a putative allelochemical in the fruits of Illicium verum and could be utilized in sustainable weed management

    Plant Growth Inhibitory Activity and the Response of Different Rootstocks to Soil Sickness Syndrome in Japanese Pear Tree

    No full text
    Soil sickness syndrome in Japanese pear (Pyrus pyrifolia (Burm.f.) Nakai) affects the growth of the tree and decreases fruit yield. This study investigated the growth-inhibitory activity in Japanese pear (Pyrus pyrifolia (Burm.f.) Nakai) using the rhizosphere soil assay method to elucidate the characteristics of growth-inhibitory substances in Japanese pears. As a result, the root bark had the highest growth inhibitory activity during the growing season of the Japanese pear. For comparative analysis, the growth-inhibitory activities of Japanese apricots (Prunus mume Sieb. Et Zucc.) and figs (Ficus carica L.) were also investigated. Similar to the Japanese pear, the root bark of Japanese apricots and figs had a higher inhibition rate than the root pith. Like Japanese apricots and figs, it was inferred that the growth inhibitory substances accumulate in the bark of the Japanese pear. Furthermore, soil sickness syndrome in Japanese pear saplings did not occur when a fragment of Japanese pear shoots or thick roots was mixed with non-pear soil (soil with no history of Japanese pear cultivation). Based on these findings, it is considered that the condition of soil sickness in Japanese pear is caused by the accumulation of phenolic compounds such as arbutin, which is accumulated in the bark of the tree, secreted from the roots, and subsequently builds up in the soil. Additionally, the degree of occurrence of soil sickness syndrome depending on the rootstock was clarified. It was observed that the rate of growth inhibition was significantly higher in Pyrus betulifolia (Birchleaf pear) than in Pyrus pyrifolia (Japanese pear). Even when Japanese pear trees were planted in soils with no history of Japanese pear cultivation, the initial growth of P. betulifolia was 1.4 times that of P. pyrifolia. It is suggested that P. betulifolia is weak against soil sickness, but is excellent at initial growth itself. Our findings are important because P. pyrifolia is used for cultivation, in combination with other mitigation measures, such as soil dressing in replanted fields

    Plant Growth Inhibitory Activity and the Response of Different Rootstocks to Soil Sickness Syndrome in Japanese Pear Tree

    No full text
    Soil sickness syndrome in Japanese pear (Pyrus pyrifolia (Burm.f.) Nakai) affects the growth of the tree and decreases fruit yield. This study investigated the growth-inhibitory activity in Japanese pear (Pyrus pyrifolia (Burm.f.) Nakai) using the rhizosphere soil assay method to elucidate the characteristics of growth-inhibitory substances in Japanese pears. As a result, the root bark had the highest growth inhibitory activity during the growing season of the Japanese pear. For comparative analysis, the growth-inhibitory activities of Japanese apricots (Prunus mume Sieb. Et Zucc.) and figs (Ficus carica L.) were also investigated. Similar to the Japanese pear, the root bark of Japanese apricots and figs had a higher inhibition rate than the root pith. Like Japanese apricots and figs, it was inferred that the growth inhibitory substances accumulate in the bark of the Japanese pear. Furthermore, soil sickness syndrome in Japanese pear saplings did not occur when a fragment of Japanese pear shoots or thick roots was mixed with non-pear soil (soil with no history of Japanese pear cultivation). Based on these findings, it is considered that the condition of soil sickness in Japanese pear is caused by the accumulation of phenolic compounds such as arbutin, which is accumulated in the bark of the tree, secreted from the roots, and subsequently builds up in the soil. Additionally, the degree of occurrence of soil sickness syndrome depending on the rootstock was clarified. It was observed that the rate of growth inhibition was significantly higher in Pyrus betulifolia (Birchleaf pear) than in Pyrus pyrifolia (Japanese pear). Even when Japanese pear trees were planted in soils with no history of Japanese pear cultivation, the initial growth of P. betulifolia was 1.4 times that of P. pyrifolia. It is suggested that P. betulifolia is weak against soil sickness, but is excellent at initial growth itself. Our findings are important because P. pyrifolia is used for cultivation, in combination with other mitigation measures, such as soil dressing in replanted fields

    Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of <i>Digitaria ciliaris</i> and <i>Cyperus microiria</i>

    No full text
    A long-term, sustainable solution to weed infestation is extremely desirable because weeds have the potential to reduce crop productivity and the aesthetic appeal of the environment. In this study, the impacts of mowing and varying degrees of trampling pressure on the suppression of weeds, alongside wound-induced changes in the allelopathic potential, of the rhizosphere soil and the root exudates of southern crabgrass (Digitaria ciliaris) and Asian flatsedge (Cyperus microiria) were evaluated under both field and greenhouse conditions. The field study results showed that all trampling treatments induced the relative suppression of weed growth. Grass weeds showed higher resistance to trampling than broad-leaved weeds. However, laboratory bioassays showed that light trampling caused a significant increase in the growth-inhibitory effects of southern crabgrass rhizosphere soil on lettuce. Moreover, mowing (9.11% of control) and trampling (16.4% of control) resulted in a marginal increase in the growth-inhibitory effects of root exudates released from southern crabgrass. Furthermore, the growth-inhibitory activities of the Asian flatsedge rhizosphere soil were significantly reduced after heavy trampling pressure. Moreover, mowing and trampling resulted in marginal reductions in the growth-inhibitory activities of root exudates released from Asian flatsedge against lettuce (i.e., 18.7% and 28.5%, respectively). In general, mowing and varying degrees of trampling induced contrasting and integrated impacts on weed suppression as well as the allelopathic potential of both southern crabgrass and Asian flatsedge

    Nitrogen Mineralization and Microbial Biomass Dynamics in Different Tropical Soils Amended with Contrasting Organic Resources

    Get PDF
    The use of location-specific and underutilized organic residues (OR) as soil amendments in small-holder agro-ecosystems is promising. Six ORs (Leucaena leucocephala, Centrosema pubescens, Gliricidia sepium, Pueraria phaseoloides, Azadirachta indica, and Theobroma cacao) were amended to three tropical soils each at 24 mg g−1 dry soil in 120-day incubation study to estimate their nitrogen (N) mineralization and microbial biomass carbon (C) dynamics. Inorganic N contents varied among ORs, soil type and incubation days. Regardless of soil type, Gliricidia had the highest inorganic N among the studied ORs. Mineralization rate of 1.4 to 1.5 mg N kg−1 soil day−1 was observed for Lego and Tec soils, respectively, and was twice higher than Nya soil. However, Nya soil released higher inorganic N than Tec and Lego soils, implying high N mineralization efficiency in the former. Consistent soil pH increase was respectively observed for Theobroma and Pueraria treatments in all soils. Moreover, Theobroma and Pueraria amendments showed the highest soil microbial biomass C (MBC) at the end of the incubation. The assessed soil properties likely affected by the dominant edaphic factors and management influenced differences in MBC and dissolved organic carbon (DOC) while OR quality indices controlled N mineralization. Thus, we conclude that soil properties and OR type are important factors for optimal utilization of organic resources.Japan Society for the Promotion of SciencePeer Reviewe

    First Broad Screening of Allelopathic Potential of Wild and Cultivated Plants in Turkey

    No full text
    Turkey has one of the richest plant diversities in the Mediterranean region. In the current literature, no broad screening has been conducted on the potential allelopathy of plants from Turkey. This study aimed to evaluate the allelopathic activity of a large number of plants from Turkey for the first time and to determine the species with significant plant growth inhibitory potentials by bioassay. Dried samples of different plant parts were collected from local herbalists. The sandwich method was used to evaluate the potential allelopathy of 126 medicinal plants belonging to 55 families. The results of lettuce radicle and hypocotyl growth for 10 and 50 mg sample treatment conformed to normal distribution. Significant inhibition on lettuce radicle elongation with 10 mg sample was observed in 40 species, out of which 27 species showed over 50% inhibitory activity. The results suggested that these species could contain potential inhibitory compounds against lettuce radicle or hypocotyl growth. The calyxes of Hibiscus sabdariffa (3.2% of control) and the seeds of Prunus dulcis (5.7% of control) showed the most potent growth inhibitory activity on lettuce radicle elongation. The potential plant growth inhibitory effects of these plants, together with the fruits of Rhus coriaria and seeds of Prunus mahaleb, have been reported in this study for the first time. All these plants are medicinal, and the results hereby presented provide essential information about the allelopathic effects of medicinal plants from Turkey

    Potential Allelopathic Candidates for Land Use and Possible Sustainable Weed Management in South Asian Ecosystem

    No full text
    Weed management is one of the significant challenges of field crops since weeds pose a remarkable threat to crop productivity in South Asian countries, including Bangladesh. Allelopathy, a phenomenon whereby secondary metabolites produced and released by one plant species influence the growth and development of other species can be exploited in sustainable management. The focus of this study was to evaluate potential allelopathic plant species which can be further explored as alternatives to synthetic herbicides or incorporated as part of integrated weed management in sustainable agriculture. Two hundred fifty-two plant samples from 70 families were collected from Bangladesh and evaluated with the sandwich bioassay. Thirty-one percent of the samples showed significant allelopathic potential on lettuce radicle elongation. Among the species that showed substantial inhibition, more than 7% of the samples showed higher inhibition (HI) and 25% showed moderate inhibition (MI) on lettuce radicle. Fruit pulps of Couroupita guianensis (95.4%), fruits of Phyllanthus emblica (95.4%), and Acacia concinna (95.4%) showed the highest inhibition on lettuce radicle elongation. In contrast, the leaf of Bombax insigne had growth promoting activity by stimulating radicle (23%) and hypocotyl (80%) elongation of lettuce seedlings. This result suggested that the species with significant plant growth inhibitory potential may play a vital role as an alternative to the increasing use of synthetic herbicides for sustainable weed management in agricultural land

    Evaluation of Biological Response of Lettuce (<i>Lactuca sativa</i> L.) and Weeds to Safranal Allelochemical of Saffron (<i>Crocus sativus</i>) by Using Static Exposure Method

    No full text
    Safranal, the main volatile chemical of Saffron (Crocus sativus) was studied to estimate its allelopathic effects on the photosynthetic pigment chlorophyll, leaf electrolyte leakage, fresh weight, catalase (CAT), and peroxidase (POX) activity of the test plant Lettuce (Lactuca sativa). In this study, the effective concentration (EC50) of safranal on CAT was estimated to be 6.12 &#181;g/cm3. CAT activity was inhibited in a dose-dependent manner by the increase in the safranal concentration while POX activity was increased. Moreover, Safranal caused significant physiological changes in chlorophyll content, leaf electrolyte leakage, and fresh weight of several weed species with Lolium multiflorum being the most sensitive. Furthermore, 5 &#181;M Safranal showed significant inhibitory activity against dicotyledonous in comparison to the monocotyledons under greenhouse conditions. The inhibition of the CAT by safranal was similar to those of uncompetitive inhibitors, and therefore the decline in carbon fixation by plants might be the mechanism behind the inhibitory activity of safranal
    corecore