1,083 research outputs found
Lattice gas with ``interaction potential''
We present an extension of a simple automaton model to incorporate non-local
interactions extending over a spatial range in lattice gases. {}From the
viewpoint of Statistical Mechanics, the lattice gas with interaction range may
serve as a prototype for non-ideal gas behavior. {}From the density
fluctuations correlation function, we obtain a quantity which is identified as
a potential of mean force. Equilibrium and transport properties are computed
theoretically and by numerical simulations to establish the validity of the
model at macroscopic scale.Comment: 12 pages LaTeX, figures available on demand ([email protected]
Multi-component lattice-Boltzmann model with interparticle interaction
A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\bf 47}, 1815,
(1993)] lattice Boltzmann model for simulating fluids with multiple components
and interparticle forces is described in detail. Macroscopic equations
governing the motion of each component are derived by using Chapman-Enskog
method. The mutual diffusivity in a binary mixture is calculated analytically
and confirmed by numerical simulation. The diffusivity is generally a function
of the concentrations of the two components but independent of the fluid
velocity so that the diffusion is Galilean invariant. The analytically
calculated shear kinematic viscosity of this model is also confirmed
numerically.Comment: 18 pages, compressed and uuencoded postscript fil
Fluctuations and skewness of the current in the partially asymmetric exclusion process
We use functional Bethe Ansatz equations to calculate the cumulants of the
total current in the partially asymmetric exclusion process. We recover known
formulas for the first two cumulants (mean value of the current and diffusion
constant) and obtain an explicit finite size formula for the third cumulant.
The expression for the third cumulant takes a simple integral form in the limit
where the asymmetry scales as the inverse of the square root of the size of the
system, which corresponds to a natural separation between weak and strong
asymmetry.Comment: 21 pages, 3 figure
Diffusion in a multi-component Lattice Boltzmann Equation model
Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE)
model are discussed in detail. The mass fluxes associated with different
mechanical driving forces are obtained using a Chapman-Enskog analysis. This
model is found to have correct diffusion behavior and the multiple diffusion
coefficients are obtained analytically. The analytical results are further
confirmed by numerical simulations in a few solvable limiting cases. The LBE
model is established as a useful computational tool for the simulation of mass
transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR
Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition
For the symmetric simple exclusion process on an infinite line, we calculate
exactly the fluctuations of the integrated current during time
through the origin when, in the initial condition, the sites are occupied with
density on the negative axis and with density on the positive
axis. All the cumulants of grow like . In the range where , the decay of the distribution of is
non-Gaussian. Our results are obtained using the Bethe ansatz and several
identities recently derived by Tracy and Widom for exclusion processes on the
infinite line.Comment: 2 figure
Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics
We investigate the dynamical behavior of binary fluid systems in two
dimensions using dissipative particle dynamics. We find that following a
symmetric quench the domain size R(t) grows with time t according to two
distinct algebraic laws R(t) = t^n: at early times n = 1/2, while for later
times n = 2/3. Following an asymmetric quench we observe only n = 1/2, and if
momentum conservation is violated we see n = 1/3 at early times. Bubble
simulations confirm the existence of a finite surface tension and the validity
of Laplace's law. Our results are compared with similar simulations which have
been performed previously using molecular dynamics, lattice-gas and
lattice-Boltzmann automata, and Langevin dynamics. We conclude that dissipative
particle dynamics is a promising method for simulating fluid properties in such
systems.Comment: RevTeX; 22 pages, 5 low-resolution figures. For full-resolution
figures, connect to http://www.tcm.phy.cam.ac.uk/~ken21/tension/tension.htm
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
- …
