871 research outputs found

    Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic

    Full text link
    First we consider a unidirectional flux \omega_bar of vehicles each of which is characterized by its `natural' velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight `world lines' in the time-space plane, with overtaking events represented by a fixed queuing time tau imposed on the overtaking vehicle. This geometrical model exhibits platoon formation and allows, among many other things, for the calculation of the effective average velocity w=\phi(v) of a vehicle of natural velocity v. Secondly, we extend the model to two opposite lanes, A and B. We argue that the queuing time \tau in one lane is determined by the traffic density in the opposite lane. On the basis of reasonable additional assumptions we establish a set of equations that couple the two lanes and can be solved numerically. It appears that above a critical value \omega_bar_c of the control parameter \omega_bar the symmetry between the lanes is spontaneously broken: there is a slow lane where long platoons form behind the slowest vehicles, and a fast lane where overtaking is easy due to the wide spacing between the platoons in the opposite direction. A variant of the model is studied in which the spatial vehicle density \rho_bar rather than the flux \omega_bar is the control parameter. Unequal fluxes \omega_bar_A and \omega_bar_B in the two lanes are also considered. The symmetry breaking phenomenon exhibited by this model, even though no doubt hard to observe in pure form in real-life traffic, nevertheless indicates a tendency of such traffic.Comment: 50 pages, 16 figures; extra references adde

    Intersection of two TASEP traffic lanes with frozen shuffle update

    Full text link
    Motivated by interest in pedestrian traffic we study two lanes (one-dimensional lattices) of length LL that intersect at a single site. Each lane is modeled by a TASEP (Totally Asymmetric Exclusion Process). The particles enter and leave lane σ\sigma (where σ=1,2\sigma=1,2) with probabilities ασ\alpha_\sigma and βσ\beta_\sigma, respectively. We employ the `frozen shuffle' update introduced in earlier work [C. Appert-Rolland et al, J. Stat. Mech. (2011) P07009], in which the particle positions are updated in a fixed random order. We find analytically that each lane may be in a `free flow' or in a `jammed' state. Hence the phase diagram in the domain 0≤α1,α2≤10\leq\alpha_1,\alpha_2\leq 1 consists of four regions with boundaries depending on β1\beta_1 and β2\beta_2. The regions meet in a single point on the diagonal of the domain. Our analytical predictions for the phase boundaries as well as for the currents and densities in each phase are confirmed by Monte Carlo simulations.Comment: 7 figure

    3D Spinodal Decomposition in the Inertial Regime

    Full text link
    We simulate late-stage coarsening of a 3D symmetric binary fluid using a lattice Boltzmann method. With reduced lengths and times l and t respectively (scales set by viscosity, density and surface tension) our data sets cover 1 < l 100 we find clear evidence of Furukawa's inertial scaling (l ~ t^{2/3}), although the crossover from the viscous regime (l ~ t) is very broad. Though it cannot be ruled out, we find no indication that Re is self-limiting (l ~ t^{1/2}) as proposed by M. Grant and K. R. Elder [Phys. Rev. Lett. 82, 14 (1999)].Comment: 4 pages, 3 eps figures, RevTex, minor changes to bring in line with published version. Mobility values added to Table

    Waves and Instabilities in Accretion Disks: MHD Spectroscopic Analysis

    Get PDF
    A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.Comment: FOM-Institute for plasma physics "Rijnhuizen", Nieuwegein, the Netherlands 12 pages, 3 figures, Accepted for publication in ApJ

    Observations of Toroidal Coupling for Low-N Alfven Modes in the Tca Tokamak

    Get PDF
    The antenna structure in the TCA tokamak is phased to excite preferentially Alfven waves with known toroidal and poloidal wave numbers. Surprisingly, the loading spectrum includes both discrete and continuum modes with poloidal wave numbers incompatible with the antenna phasing. These additional modes, which are important for our heating experiments, can be attributed to linear mode coupling induced by the toroidicity of the plasma column, when we take into account ion-cyclotron effects

    Diffusion in a multi-component Lattice Boltzmann Equation model

    Full text link
    Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE) model are discussed in detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients are obtained analytically. The analytical results are further confirmed by numerical simulations in a few solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR

    The Kolmogorov-Sinai Entropy for Dilute Gases in Equilibrium

    Full text link
    We use the kinetic theory of gases to compute the Kolmogorov-Sinai entropy per particle for a dilute gas in equilibrium. For an equilibrium system, the KS entropy, h_KS is the sum of all of the positive Lyapunov exponents characterizing the chaotic behavior of the gas. We compute h_KS/N, where N is the number of particles in the gas. This quantity has a density expansion of the form h_KS/N = a\nu[-\ln{\tilde{n}} + b + O(\tilde{n})], where \nu is the single-particle collision frequency and \tilde{n} is the reduced number density of the gas. The theoretical values for the coefficients a and b are compared with the results of computer simulations, with excellent agreement for a, and less than satisfactory agreement for b. Possible reasons for this difference in b are discussed.Comment: 15 pages, 2 figures, submitted to Phys. Rev.

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases I: Equilibrium Systems

    Full text link
    We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a dilute, random array of hard disk or hard sphere scatterers - i.e. the dilute Lorentz gas model. This is carried out in two ways: First we use simple kinetic theory arguments to compute the Lyapunov spectrum for both two and three dimensional systems. In order to provide a method that can easily be generalized to non-uniform systems we then use a method based upon extensions of the Lorentz-Boltzmann (LB) equation to include variables that characterize the chaotic behavior of the system. The extended LB equations depend upon the number of dimensions and on whether one is computing positive or negative Lyapunov exponents. In the latter case the extended LB equation is closely related to an "anti-Lorentz-Boltzmann equation" where the collision operator has the opposite sign from the ordinary LB equation. Finally we compare our results with computer simulations of Dellago and Posch and find very good agreement.Comment: 48 pages, 3 ps fig

    Tests of Dynamical Scaling in 3-D Spinodal Decomposition

    Full text link
    We simulate late-stage coarsening of a 3-D symmetric binary fluid. With reduced units l,t (with scales set by viscosity, density and surface tension) our data extends two decades in t beyond earlier work. Across at least four decades, our own and others' individual datasets (< 1 decade each) show viscous hydrodynamic scaling (l ~ a + b t), but b is not constant between runs as this scaling demands. This betrays either the unexpected intrusion of a discretization (or molecular) lengthscale, or an exceptionally slow crossover between viscous and inertial regimes.Comment: Submitted to Phys. Rev.
    • …
    corecore