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Abstract

Understanding and predicting the collective behaviour of crowds is essential to
improve the efficiency of pedestrian flows in urban areas and minimize the risks of
accidents at mass events. We advocate for the development of a “crowd forecasting
system”, whereby real-time observations of crowds are coupled to fast and reliable
models to produce rapid predictions of the crowd movement and eventually help
crowd managers choose between tailored optimization strategies. Here, we propose
a Bi-directional Macroscopic (BM) model as the core of such a system. Its key
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input is the fundamental diagram for bi-directional flows, i.e. the relation between
the pedestrian fluxes and densities. We design and run a laboratory experiments
involving a total of 119 participants walking in opposite directions in a circular
corridor and show that the model is able to accurately capture the experimental data
in a typical crowd forecasting situation. Finally, we propose a simple segregation
strategy for enhancing the traffic efficiency, and use the BM model to determine the
conditions under which this strategy would be beneficial. The BM model, therefore,
could serve as a building block to develop on the fly prediction of crowd movements
and help deploying real-time crowd optimization strategies.

Key words: Pedestrian traffic, bi-directional flux, collective behaviour, data-based
modeling, macroscopic model

AMS Subject classification: Primary: 93A30, 90B20; Secondary: 35B30, 35L65.

1 Introduction

Since 2008, more than half of the world population is living in cities [1], which asks for
the development of large-scale multimodal transportation systems. At the core of such
systems, crowds of pedestrians are to be found in transportation facilities. The massive
presence of this population in airports, train stations, metro stations, etc. is a challenge in
terms of safety and transportation efficiency [2]. This paper deals with the experimental
analysis and modeling of crowd movements so as to develop operational tools to manage
pedestrians in places as various as airports, train or metro stations or streets.

Managing the comfort and safety for pedestrians is difficult first because they are not
operated or regulated as simply as vehicles can be through sets of rules and traffic signals
[3]. Hence, it is difficult to prevent the formation of dense traffic areas, where compacted
crowds are exposed to risks of stampedes [4, 5]. For this reason, it is important to
design pedestrian traffic management systems similar to those existing for car traffic, and
more particularly simulation tools to predict the short-term evolution of the traffic from
conditions measure in-situ and in real time.

Today, on the one hand, pedestrian crowd simulators are developed for the purpose of
validating the layout and the structure of buildings aimed at hosting a large public. This
validation is performed beforehand, at the stage of design [6]. Most are not adapted to
an on-line usage. Nevertheless, on the other hand, recent progress in pedestrian tracking
technologies, both for detailed trajectories [7, 8, 9] or global traffic conditions [10, 11, 12],
make possible to initialize a pedestrian traffic simulators with current conditions and to
perform short-term traffic predictions. This would open the possibility to anticipate risks
of congestion and to react accordingly. Such simulators are lacking today, thus, it is
important to focus our attention on simulators which are able to continuously process a
flow of input traffic data and which are efficient enough to perform short term predictions
on-line. Our work aims at to fill this particular gap, by developing online simulation tools
to assist the management of pedestrian traffic.
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We aim at performing short term predictions in places presenting risks of large at-
tendance and risk of congestion. A specific type of environment retains our attention:
corridors. By corridors, we mean elongated areas such as metro corridors, sidewalks or
shopping arcade where pedestrians form bidirectional traffic flows. This type of place is
particularly interesting to study because corridors generally link large places with high
attendance (e.g., a corridor between two platforms). Because the traffic intensity is higher
in corridors, they are the place where congestion can more easily initiate. In addition,
because corridors are often organized in networks, they offer an opportunity to apply
rerouting strategies to locally limit the risk of congestion: pedestrian would be suggested
or forced to avoid corridors presenting a risk of future congestion, similarly to car drivers
with modern GPS-based assistance systems.

How to perform accurate and fast predictive simulation for bidirectional pedestrian
traffic in corridors? Two categories of models are described in the literature: microscopic
and macroscopic approaches. The former approach is an ascending one: the motion of
individual pedestrians is independently simulated based on multi-agent technique and
crowd traffic conditions emerge from combination of interactions between agents. They
are fundamentally based on the local models of interactions, which were developed in var-
ious disciplines such as physics [13], computer graphics [14] or behavioral and cognitive
sciences [15, 16], and which dictate how agents influence each other’s motion. The latter
type of approach are macroscopic ones. They model a crowd as a whole, a matter mov-
ing like a compressible fluid. Relying on the conservation law, a macroscopic simulation
computes the crowd motion by estimating the temporal variations of local density [19].
Algorithmic complexity is one fundamental difference between these two types of simula-
tors. Microscopic simulators consider interactions between all possible pairs of agent and
are quadratic by nature. In contrast, macroscopic algorithms are linearly complex with
the size of the crowd. This difference makes macroscopic approaches a model of choice.
While microscopic models fail to produce real time simulations as soon as the pedestrian
number becomes large, macroscopic models can provide fast, simple and yet surprisingly
accurate results even at large densities.

In this paper, we propose a macroscopic model to predict bi-directional traffic in
corridors. To enhance computational efficiency, we consider only the longitudinal direction
of the walkway, ignoring the lateral dimension. We show hereafter that despite this
simplification a macroscopic model is able to quantitatively reproduce key features of
crowd dynamics. In such category of model, the relevant information encoding crowd
dynamics is the fundamental diagram, which that defines pedestrian flux as a function
of pedestrian densities. More precisely, the proposed method relies on a “Bi-directional
Fundamental Diagram” (BFD), which captures situations of a crowd made of people
moving in the same and opposite directions. Fundamental diagrams are widely used for
one-way traffic (since the pioneering work of Lighthill and Whitham [20]) but two-way
pedestrian traffic has been scarcely investigated under the angle of the BFD [21, 22, 23,
24, 25, 26, 27]. Yet, two-way traffic is the most common situation in everyday life and
counter-flows played a decisive role in several crowd disasters [28, 29].

To characterize the BFD, several experiments have been conducted from which we es-

3

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/175760doi: bioRxiv preprint first posted online Aug. 13, 2017; 

http://dx.doi.org/10.1101/175760


tablish the first result of the present paper: an estimation of the BFD from experimental
data. The data are acquired in real time tracking experiment using automatic motion
capture techniques [30]. Our second result is the validation of the Bi-directional Macro-
scopic (BM) model which uses the calibrated BFD as its core. Comparisons between
simulations and experiments demonstrate that the BM model captures essential features
of crowd dynamics. We then test our model in a typical forecasting scenario where the
crowd is recorded at two distant points. We show that the model accurately predicts the
state of the corridor between the recording points and develops traveling waves similar to
those observed in the experiments. Our third result is the determination of the optimum
of a corridor segregation strategy consisting in separating -or not- antagonist pedestrian
fluxes according to the corridor occupancy. The BM model suggests that the segregation
is efficient when the two antagonist fluxes are roughly balanced, but is counter-productive
in strongly unbalanced cases.

2 Methods

2.1 Experimental setup.

In this section, we describe our experiment on pedestrian traffic. Our objective was to
build a Bi-directional Fundamental Diagram (BFD), i.e., to observe the relation between
the moving speed of participants under different conditions of density and balance of
counter-flows. To this end, we asked participants to walk in a circular corridor delimited
by walls (as displayed in Figure 1a). Some participants were instructed to walk in the
clockwise direction, some others to walk in the anticlockwise direction. They were assigned
a walking direction before each trial. For each trial, participants were initially still in the
corridor and their positions randomly distributed. Each replication lasted 60 seconds after
starting signal was given.

Participants were not allowed to communicate, and were asked to behave as if they
were walking alone in a street to reach a destination. 119 volunteers participated the
experiments (we performed two experimental sessions, one with 59 participants and one
with 60 participants). They were adults recruited through advertising and with no known
pathology which would affect their locomotion. The experiment conformed to the declara-
tion of Helsinki. Participants were naive with respect to the purpose of our experiments.

Experiments took place in 2009 in Rennes, France. The circular corridor internal and
external radius was respectively 2 and 4.5 meters. We studied 3 different proportions of
fluxes, i.e., the balance of participants walking in a direction versus participants walking in
the opposite direction. We studied: 100%−0% balance, 75%−25% balance and 50%−50%
balance.

We collected kinematics data. To this end, participants wore white T-shirts and 4
reflexive markers (see Fig. 1b), one on the forehead, one on the left shoulder, and two
on the right shoulder. This made the distinction of the left and right shoulders easier.
The motion of the markers has been tracked by 8 infra red cameras placed all around
the experimental setting. Marker trajectories have been reconstructed using Vicon IQ
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software (VICON MX-40, Oxford Metrics, UK). The center of mass of the 4 markers
projected onto the horizontal plane is computed and recorded as the position of the
subjects [30, 17].

Figure 1: Experiments and data acquisition. (a) A typical experiment where bi-
directional circulation is analyzed. (b) Participants equipped with reflexive markers were
tracked by means of an optoelectronic motion capture system (VICON MX-40, Oxford
Metrics, UK). (c) The area-weighting assignment procedure: The particle i (red dot) is
located in the cell Cn(i) = [θk, θk+1] and is assigned to the two nodes θk and θk+1 in
proportion to the area enclosing the opposite node. For instance, on the picture, the
assignment to the node θk is in proportion to the ratio of the shaded area to the area of
Cn(i).

2.2 Data processing.

The collected data give access to the two-dimensional Cartesian coordinates (xi, yi)(t
n)

(relative to the center of the arena and a fixed reference frame) of each pedestrian, as well
as their associated polar coordinates (θi, ri)(t

n) (with xi = ri cos θi, yi = ri sin θi), sampled
at a frequency of 10 Hz (i.e. tn =n∆t with ∆t= 0.1 s). Since we are interested in a one
dimensional analysis, we focus on the angular coordinate of the pedestrians. We assign a
fixed value for the radial coordinates Rmed = 3.25m corresponding to the median value.
To estimate the density distribution of pedestrians on the arena, we use a classical area-
weighting procedure (a.k.a. Particle-In-Cell method [54, 55]). This procedure consists
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in assigning each pedestrian to the two neighboring nodes in proportion to the length
enclosing the opposite node (see Fig. 1c). The density ρ̃nk is obtained by combining the
contributions of all pedestrians i belonging to the two cells sharing the node k, according
to the formula

Sρ̃nk =
∑
i

`nk(i)

∆θ
( ρ̃nk in m−2 ), (1)

where the sum extends over pedestrians i belonging to one of the two cells sharing node
k. The quantity S is the area of the cross section

S = ∆θ ·
∫ r=Rout

r=Rin

r dr = ∆θ · 8.125. (2)

By linear interpolation, this procedure gives rise to a continuous piecewise linear recon-
structed density ρ̃n(θ) at time tn. We can verify that the total number of pedestrian N
is preserved in this interpolation procedure, i.e.

∑
k S ρ̃nk = N .

To estimate the flux, we compute a finite-difference approximation of the azimuthal
component of the velocity vni of each pedestrian i at time tn:

vni = rni θ̇
n
i ≈ Rmed

θn+1
i − θni

∆t
. (3)

The densities ρ̃n+,k, ρ̃
n
−,k and fluxes f̃n+,k, f̃

n
−,k of the clockwise and anti-clockwise pedestrians

respectively are estimated at time tn on the polar grid θk = k∆θ by means of the area-
weighting assignment procedure described in Fig. 1c. The procedure for estimating the
densities ρ̃n+,k, ρ̃

n
−,k uses Eq. 1 where the sum is restricted to pedestrians moving in the

considered direction. For the estimation of the fluxes, we use the following formula

S f̃n+,k =
∑
i

`nk(i)

∆θ
vni ( f̃n+,k in (ms)−1 ), (4)

where again the sum extends over pedestrians i belonging to one of the two cells sharing
node k (and moving in the considered direction).

2.3 Model.

To investigate the flow of the pedestrians and make prediction, we consider a bidirectional
extension of the traffic model [20, 24]. Let ρ±(x, t) be the densities at position x (along
the median circle) and time t. The Bi-directional Macroscopic (BM) is written:

∂tρ+ + ∂xf(ρ+, ρ−) = 0, (5)

∂tρ− − ∂xf(ρ−, ρ+) = 0, (6)

where f(ρ+, ρ−) is the “Bi-directional Fundamental Diagram” (BFD) (see Fig. 2a). Both
Eq. 5 and Eq. 6 have the form of a continuity equation for the associated pedestrian
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Figure 2: Characteristic speeds in the BM model. (a) Perspective view of the BFD
f(ρ+, ρ−) as a function of ρ+ and ρ−. (b) Sketchy fundamental diagram (in red) of a
one-way flow f(ρ) as a function of the single density ρ. The function f(ρ) has the same
monotony as cuts of the BFD f(ρ+, ρ−) along lines ρ− = Constant. The average velocity
u(ρ) = f(ρ)/ρ and the cluster velocity λ(ρ) = f ′(ρ) are respectively the slopes of the
secant (in red) and tangent (in green) lines to this curve.

density. It expresses that the only cause of a time variation of any of these densities in
a corridor stretch [x, x + dx] is due to the flux of pedestrians entering this stretch at x
and leaving it at x + dx (or vice versa according to the direction of motion). Because x
corresponds to the angular coordinate θ, ρ± are assumed periodic with period 2πRmed.
Since the model is a system of conservation laws, we use a finite volume method to estimate
numerically its solutions [56, 57]. More specifically, we use a central scheme method
[24, 58]. By analogy with the one-directional traffic model, we introduce characteristic
speeds of the models (see Fig. 2b):

u+ =
f+
ρ+

, u− =
f−
ρ−

, (7)

λ+ =
∂f

∂ρ+

∣∣∣
(ρ+,ρ−)

, λ− = − ∂f

∂ρ+

∣∣∣
(ρ−,ρ+)

. (8)

Strictly speaking, the quantities λ± are the velocities at which level curves of the densities
ρ± are convected. It corresponds to the velocity of waves that arise from a perturbation of
a uniform solution given by ρ±. Since the model is actually bidirectional, the expression
of λ± in Eq. 8 is actually an approximation (see appendix A).

3 Results

3.1 Estimated bi-directional fundamental diagram.

From these data, we estimate the relation between the local densities ρ+ and ρ− and fluxes
of the clockwise and anti-clockwise pedestrians (respectively denoted by f+ and f−). Using
the reconstructed densities and fluxes, to each couple (k, n), we can associate two triples
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Figure 3: Bi-directional Fundamental Diagram (BFD). (a) Estimated BFD express-
ing the flux f in one direction as a function of the density of pedestrians moving in the
same direction ρ+ and in the opposite direction ρ−. (b) Parametrized BFD used in the
model. The values of f , in (m.s)−1, are color coded according to the color bar.

(ρ̃n+,k, ρ̃
n
−,k, f̃

n
+,k) and (ρ̃n−,k, ρ̃

n
+,k, f̃

n
−,k). Thus, this provides us a sampling of f+ and f−. To

estimate the relation between densities and fluxes, we partition the (ρ+, ρ−) space into
squared sampling cells of size ∆ρ = 0.1 m−2. For each of these cells, we compute the
average of the samples f̃n±,k conditioned by the fact that (ρ̃n±,k, ρ̃

n
∓,k) lies in the chosen cell.

As a result, we obtain an estimated f(ρ+, ρ−) relationship. We then seek for a parametric
estimation of the fundamental diagram f(ρ+, ρ−). The procedure consists in finding the
best fit of the samples (ρ̃n+,k, ρ̃

n
−,k, f̃

n
k ) to a prescribed analytic formula. After several trials,

it appears that the best fit consists in taking the velocity u+ = f+/ρ+ equal to an affine
function of (ρ+, ρ−) leading to the formula (9). Different parametric estimations of the
fundamental diagram are then performed according to the experimental conditions. This
is needed because the subjects themselves or their physical or psychological conditions
differ from one experimental trial to another one. We gather replications corresponding
to the same flux balance and realize three different estimations for the 50%−50% balanced
fluxes case, the 75%−25% flux balance case and the mono-directional (100%−0% flux
balance) case. The result of the parametric estimation is given in Table 1 and the flux
for the balanced case is represented in Fig. 2a.

In Fig. 3a, we plot the BFD for the experimental data corresponding to balanced
fluxes (50%−50% balance). The grey area corresponds to the absence of data, since the
observed maximum pedestrian density achieved in our experiments is about 2 m−2. It
appears that the BFD is increasing in ρ+ and decreasing in ρ− and reaches its maximum
at the total density of 1.7 m−2. The estimation of the decay of the BFD as a function
of ρ− is one of the key results of this work. As ρ− increases, the density of obstacles
impeding the motion of the pedestrians intensifies, resulting in an increased ’friction’ [31].
We parametrize the flux f using a quadratic function of the form:

f(ρ+, ρ−) = a ρ+ (1− b ρ+ − cρ−) , (9)
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Sample set a b c R2

50%− 50% 1.218 0.273 0.181 0.944
75%− 25% 1.216 0.087 0.203 0.972
100%− 0% 1.269 0.077 0 0.982

Table 1: Parametric estimation of the bi-directional fundamental diagram. The coeffi-
cients a, b and c refer to Eq. 9. To measure the accuracy of each regression, we estimate
the coefficient of determination R2 in the last column (the closer R2 is to 1, the better
the estimation is).

with densities expressed in (pedestrians) m−2 and flux expressed in (ms)−1. This paramet-
ric BFD is the key input in the Bi-directional Macroscopic model (see Methods). Despite
its simplicity, the formula is able to capture several key features of the pedestrian dy-
namics as we will see below. Coefficients a, b and c are easily interpreted and thus their
estimation gives insights into the pedestrian dynamics. For instance, coefficient a corre-
sponds to the free average velocity of the pedestrians. Coefficients b and c correspond to
’friction’ with respectively co- and counter-moving pedestrians. Using linear regression,
we obtain the estimated values given in table 1. As an example, the estimated flux for
the experiments with 50%− 50% balance is plotted in Fig. 3b.

3.2 Data-model comparison: cluster dynamics.

In order to test the model, we envision a crowd forecasting system where sensors are
placed at two distant locations A and B > A of a corridor. The sensors record the
densities and mean velocities of the incoming pedestrians. The model is then used to
predict the occupancy of the corridor [A,B] knowing these boundary conditions. To
match this situation with the ring-shaped corridor used in the experiments, we introduce
a branch cut along the half line θ=0 in polar coordinates and assume that A corresponds
to θ = 0 and B to θ = 2π. Pedestrians crossing the branch cut in the clockwise (resp.
anti-clockwise) direction are therefore entering the corridor at B and moving towards the
left (resp. at A and moving to the right) as depicted in Fig. 4a. We use the densities
estimated from the experiments as boundary and initial conditions for the BM model
(see Methods section for a detailed description of the model and simulations). Fig. 4b,c
(left) show the densities ρ±(x, t) for one of the experimental replications corresponding
to 50%−50% flux balance with 60 pedestrians, as functions of x (horizontal axis) and
t (vertical axis, running downwards) in color code, from blue (low density) to red (high
density). Fig. 4b,c (right) show the results of the BM model run in the crowd forecasting
situation as described above. Both data and simulations exhibit the formation of clusters
(which appear in intense red colors on Fig. 4b,c), separated by almost vacuum regions (in
intense blue color on the figure). Clusters move along with the pedestrians but not at the
same speed. Similar comparisons for the 75%−25% flux balance are presented in figure 5.
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Figure 4: Model results and comparisons with experimental data. (a) Setting
for the model: the density at the entry of the corridor (x = 0) is taken from the experi-
ment and the model is used to predict the occupancy inside the corridor. (b-c) Clockwise
and anti-clockwise (resp. b and c) pedestrian densities as functions of position (hori-
zontal axis) and time (vertical axis running downwards), for one of the replications with
60 pedestrians corresponding to balanced fluxes (50% of pedestrians walking in each di-
rection). Left picture of each panel: experiment ; right picture: BM model, run with
initial and boundary data and BFD estimated from the experimental data. The density
is color-coded according to the lateral scale (in m−2).
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Figure 5: Model results and comparisons with experiment data with the 75%−25% flux
balance: %75 are moving to the left (ρ−) and %25 are moving to the right (ρ+). See
Fig. 4b,c for balanced flux.
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Figure 6: Pedestrian and cluster velocities. Comparison between the pedestrian
velocity u (red curve) and cluster velocity λ (green curve) as functions of the local density
of co-moving pedestrians ρ from the experiments (circles) and from the BM model (solid
line) with balanced flux (50%−50%) on the left figure and with 75%−25% flux balance
on the right figure. Since λ < u, information is propagating upstream as predicted by the
BM model.
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3.3 Comparison of the model’s predictions with experimental
data.

To compare quantitatively the model with experimental data, we estimate the average
and cluster velocities (resp. u and λ) defined in Eqs. 7 and 8. We detail in appendix
B the numerical estimations of these curves. On Fig. 6, the difference u − λ between
the average and cluster velocities is roughly linearly increasing. Using the expression of
the flux (Eq. 1) together with the characteristics speeds (Eqs. 7 and 8), the theoretical
prediction gives u+−λ+ ≈ 0.33 ρ+ ms−1 for small ρ−. According to this prediction, this
offset should increase linearly with ρ+ and reach the value 0.4 ms−1 for ρ+ ≈ 1.2 m−2.
This theoretical estimate provides the right order of magnitude of the experimentally
observed value of u+−λ+.

3.4 Segregation strategy efficiency.

We now exploit the BM model to estimate the efficiency of a flow segregation strategy in
which the two pedestrian types circulate preferably on one side of the corridor, with half
the width of the corridor devoted to each type. In practice, this strategy can be achieved
by suitable signaling. On the one hand segregation reduces the influence of counter-
moving pedestrians, but on the other hand the available corridor width is smaller and
the density of co-moving pedestrians increases. To measure the efficiency of the strategy,
we test the model in the two situations. Let (dN/dt)S and (dN/dt)NS be the number of
pedestrians per unit time that the corridor is able to accommodate in the segregated and
non-segregated cases respectively, and G the gain in using the segregated strategy, i.e.
the ratio of these two quantities minus one (see Methods). The gain as a function of the
densities of the two pedestrian types is plotted in Fig. 7. It appears that the segregation
strategy improves significantly the efficiency of the system when the densities of the two
types are both large and of the same order. However, the strategy is inefficient when one
type outnumbers the other one. In this case, it is more efficient to use the un-segregated
strategy. This analysis demonstrates the benefits of a strategy optimization scheme in
which the decision of implementing segregation or not could be taken in real-time. Indeed,
segregation offers benefits only in some regions of the (ρ+, ρ−) plane. Since setting up a
segregation strategy implies additional costs, the gain in traffic efficiency has to overtake
the expense. The diagram presented in Fig. 7 helps finding which regimes of densities
provide an overall benefit in separating the two inflows of pedestrians.

To estimate the efficiency of the segregation strategy, we compare the total flux of
pedestrians when the two species of pedestrians ρ+ and ρ− are mixed or segregated in a
corridor. Without a segregation strategy, we suppose that the densities ρ+ and ρ− are
uniformly spread on the corridor. We assume here that the estimation of the flux f is
independent as the corridor width. That will be more likely to be true for large corridor
since the boundary effects would be less important. Thus, the number of pedestrians
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Figure 7: Efficiency segregation strategy. Estimation of the relative gain using the
segregation strategy (in %) as a function of the densities ρ+, ρ− (in m−2) of the two types
of pedestrians (level curve representation). The strategy is efficient when both densities
ρ+ and ρ− are roughly balanced and large.

passing through a cross section per unit time is given by:

dN

dt

∣∣∣∣
NS

=
(
f(ρ+, ρ−) + f(ρ−, ρ+)

)
L

where L is the size of the corridor. The flux f+ is estimated from an interpolation of the
three flux functions obtained in Table 1. More precisely, we use a quadratic regression to
estimate each coefficient a∗, b∗ and c∗ at the ratio ρ+

ρ++ρ−
using the data of Tab. 1. Then,

we use those coefficients to estimate f+(ρ+, ρ−) (see Eq. 9).
If the species ρ+ and ρ− are segregated on each side of the corridor, the size of the
corridor is divided by 2 and the density of co-moving pedestrian is multiplied by 2. Thus,
we obtain:

dN

dt

∣∣∣∣
S

=
(
f(2ρ+, 0) + f(2ρ−, 0)

)
L.

Then, the relative gain of the segregation strategy G is estimated through the following
formula:

G =
(dN/dt)S − (dN/dt)NS

(dN/dt)NS
=

(dN/dt)S
(dN/dt)NS

− 1.

4 Discussion.

In this work, we have set the objective to build simulation tools to assist the management
of pedestrian traffic. Our attention was focused on the case of bidirectional flows because,
on the one hand, it captures many common situations to be found in corridors or sidewalks,
and on the other hand, it received relatively poor attention in the literature. One of
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our work hypothesis is that two main factors influence conditions in bidirectional traffic:
density, and proportion of each directional flow.

In the first part of this work, we empirically analyze bidirectional traffic. Our main
result is captured by Figure 3: we show an evidence of the influence of the density of
each directional flow on the flux. To perform this empirical observation, we chose labo-
ratory conditions. Choosing laboratory conditions allowed us controlling the goals and
motivations of walkers, and limiting the effect of the other many factors which influence
pedestrian behaviors, such as physiological (e.g., aging) or social ones (e.g., walking to-
gether in groups). We clearly isolate the role of the density factors we considered on the
resulting traffic conditions. This however limited the amount of observation data due to
the required effort to gather them (subjects recruitment, data reconstruction and pro-
cessing efforts, etc.). Nevertheless, the presented method applies to any new data. As,
for instance, the fundamental diagram may depend on the nature of the subjects that are
using the walkway [35] (children, adults, aging people, etc.), it would be interesting to
update the BFD from dataset with controlled population.

In the second part of this work, we introduce a first order model to estimate the
bidirectional fundamental diagram. In spite of the relative simplicity of this model, we
demonstrate the ability to adhere to observation data, as illustrated by our results reported
in Table 1. We observe that the estimated average velocity a consistently takes similar
values throughout the 3 sets of experiments. Friction with the co-moving pedestrians b is
surprisingly larger in the experiments with a 50%−50% balance. It exceeds the friction with
counter-moving pedestrians (i.e. b > c). One explanation of this result is the emergence of
lanes. In the experiments with 50%−50% balance, lane formation is very strong whereas
it is scarcely observed in the experiments with 75%−25% or 100%−0% balance. On the
one hand, lane formation reduces the interactions with counter-moving pedestrians and
thus decreases the friction coefficient c. But on the other hand, it enhances clustering
with co-moving pedestrians and thus increases the friction coefficients b.

As a result, the friction coefficients b and c are associated with complex pattern for-
mation in the longitudinal direction such as clustering as well as in the lateral direction
such as lane formation. They provide a simple yet effective characterization of various
flow regimes. The Bi-directional Macroscopic (BM) model critically depends on the three
parameters a, b and c. By varying them, we can span various types of pedestrian be-
havior. As such, the BM model is capable of describing complex pedestrian behavior
while having the efficiency of a one-dimensional model. Of course, one can make the flux
expression f more complex to include all possible scenarios in a single expression. But
this is at the cost of introducing new parameters which need to be estimated and this
decreases the efficiency of the model in real-time crowd control situation. Therefore we
prefer to use a greedy modeling approach with a simple (but not simplistic) model. The
accuracy of the model can however be discussed with respect to the employed data-set.
We have limited the role of secondary factors, we may expect to have a lower adherence
using real, non-controlled, kinematics data (e.g., outdoor video tracking). This possible
loss of accuracy need to be evaluated, nevertheless, we can expect that our results still
hold in many cases, such as metro corridor traffic at rush, where most of the traffic is
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composed of pedestrian moving individually.
In the last part of this work, we have chosen to evaluate our model based on an analysis

of cluster dynamics. The emergence of clusters as a consequence of density fluctuations
is a classical example of spatio-temporal patterns in traffic flow phenomena [32, 33], also
known as Kinematic Waves [34, 18]. Comparing the large-scale dynamical features of the
clusters in the simulation and the data provides a practical way to assess the validity of
the BM model. For a given type of pedestrians (clockwise or anti-clockwise), clusters are
defined as regions of space where the density of this type of pedestrian exceeds a certain
threshold value (see Methods). Fig. 6 gives the estimated average pedestrian velocity u
(in red) and cluster velocity λ (in green) as functions of the density of pedestrians for the
experiments (circles) and the simulations (solid lines) in the balanced flux case (50%−50%).
We notice an excellent agreement between experiments and simulations despite some
discrepancies at low density (i.e. ρ+ < .4m−2). Those discrepancies could be explained
by the fluctuations in the experiments at low density which perturb the estimation of u
and λ. Fig. 4 has already provided a qualitative comparison between traveling waves in the
experiments and in the model, Fig. 6 provides a quantitative estimate of the resemblance.
We notice that pedestrian velocity u is always faster than the cluster velocity λ. This
indicates that the information is propagating upstream. Moreover, when the density
increases, we observe a faster decay of the cluster velocity λ compared to the average
velocity u (i.e. u−λ is increasing with ρ). This implies that perturbations propagate
faster at large density as it is predicted by the BM model (see Methods).

5 Conclusion and Future Work

We have presented a study on bidirectional flows of pedestrian. We have first presented
an experimental measurement of the bidirectional fundamental diagram, with changing
conditions of flow proportions. We have then introduced a bidirectional traffic model,
directly based on this diagram (a.k.a. “first order models ”) for efficiency reasons. Finally,
we demonstrate a relevant application of our model in the frame of automated traffic
management systems, allowing users to estimate the benefit to flow segregation strategy
to improve traffic.

The power of our approach is to capture complex phenomenon with a simple framework
involving only three parameters. Moreover, one can easily extend the model to encompass
more advanced features. As a first research direction, we would like to use real-time
estimation of crowd parameters as it has been developed in several studies [36, 37, 38, 39,
40, 41, 42] to update the BFD diagram. The data assimilation strategy outlined above
will be able to adapt the BM model quickly to changes in the nature and composition of
the crowd.

Another possible extension would be to use models involving a differential relation
between the flux and the local densities [43, 44] (a.k.a. “second order models”). Those
models could generate metastable equilibria and phase transitions, which play an impor-
tant role in traffic [45, 33]. Still, our first exploration of the data does not indicate that
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metastability plays an important role in pedestrian traffic.
To extend our work in two-dimensions (i.e. take into account the radial component),

one has to consider the direction of the flow of pedestrians. Several macroscopic models
have been proposed [46, 47, 48] with the introduction of a minimization principle to select
the best route. Since most of bidirectional pedestrian flow have been studied at the
microscopic level with Cellular Automata models [49, 50, 51, 52], it will be compelling to
compare the two approaches.

Finally, it would be interesting to test the framework in a more complex environment
such as a network of corridors. Several strategies could be tested to decongest traffic such
as indicating which corridor to use depending on its occupancy. Hence, the efficiency of
a network could be measured allowing to improve its design for safer evacuation.

Appendix A. Analytic estimation of the cluster veloc-

ity λ

In a one-way traffic, there is only one type of density ρ and the flux is simply given by
f(ρ). The characteristic velocities are then defined as (see Fig. 6b):

u =
f(ρ)

ρ
, λ = f ′(ρ).

In a bi-directional traffic, there are two values for the cluster velocities, denoted by
λ±(ρ+, ρ−). Indeed, the flux function f(ρ) must be replaced by the BFD f(ρ+, ρ−) and
the quantity f ′(ρ) must be replaced by the matrix

A(ρ+, ρ−) =

(
c++ c+−
−c−+ −c−−

)
,

where

c++ = ∂ρ+

(
f(ρ+, ρ−)

)
, c+− = ∂ρ−

(
f(ρ+, ρ−)

)
,

c−+ = ∂ρ+

(
f(ρ−, ρ+)

)
, c−− = ∂ρ−

(
f(ρ−, ρ+)

)
.

Cluster velocities λ±(ρ+, ρ−) are the eigenvalues of this matrix. They have been computed
in [24] and are equal to

λ± =
1

2
(c++ − c−− ±

√
∆), with ∆ = (c++ + c−−)2 − 4c+−c−+.

The eigenvalues λ± are real (i.e. the BM model is hyperbolic [57]) if and only if ∆ > 0.
This is the case in the situation (met in our experiments) where

ε =
max{|c+−|, |c−+|}
max{|c++|, |c−−|}

� 1. (10)
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In general, it is not possible to associate one of these eigenvalues to either one or the other
pedestrian species ρ+ and ρ−. For instance, if we denote ρ1+ and ρ1− the perturbations
of ρ+ and ρ−, there are not convected by λ+ and λ−. Instead, λ+ and λ− are convecting
the following linear combinations:

α+ =
Eρ1+ − c+−ρ1−√
E2 − c+−c−+

, α− =
Eρ1− − c−+ρ1+√
E2 − c+−c−+

,

with E =
1

2
[
√

∆− (c++ + c−−)].

This means that the densities ρ± are not purely convected. However, in the regime
characterized by ε� 1 (Eq. 10), we find that

α+ ≈ ρ1+, α− ≈ ρ1−.

In this approximation, the densities ρ± are purely convected with velocities λ±, which
means that we can associate λ+ and λ− to the velocities of clusters of the clockwise and
anti-clockwise moving pedestrians respectively. In this approximation, to the first order
in ε, we find:

λ+ = c++, λ− = −c−−, (11)

which gives a situation similar to car traffic.

Appendix B. Identification and quantification of clus-

ters.

Cluster analysis provides a lens to analyze emergence of macroscopic structures in pedes-
trians dynamics. From a macroscopic viewpoint, a cluster at a given time t is a connected
set of points x where the density ρ(x, t) is larger than a given threshold h (see Fig. 8a). Ob-
viously, there are different clusters for the clockwise (ρ = ρ+) and anticlockwise (ρ = ρ−)
pedestrians. As clusters move in time, they are bounded by level curves X(t) of ρ defined
by:

ρ(X(t), t) = h. (12)

To determine a cluster, we first need to construct the cluster boundaries, i.e. the curves
X(t) defined by (12), from the pointwise estimation of ρ±.

To construct such curves X(t), we consider ρn(x) the continuous piecewise linear
function of x which interpolates the estimated density ρnk at a given time tn (here, we
indifferently use the notation ρ for ρ+ and ρ− ; the ± indices will be used below to
designate the start and end points of the clusters). For a given threshold h, we determine
two sets of points X±j , j = 1, . . . , J such that ρn(X±j ) = h and ±(dρn/dx)(X±j ) > 0. The
number of points in each set is the same, J , due to the periodicity of ρn. It is finite unless
ρn(x) has constant value h on a whole interval, a non generic situation that we discard.
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The j-th cluster is defined as the interval [X+
j , X

−
j ], because, due to the conditions on

the derivatives, we have ρn(x) ≥ h for all x belonging to this interval (see Fig. 8). We
now consider two consecutive time intervals tn and tn+1. We connect X−j (tn) to X−j (tn+1)
and X+

j (tn) to X+
j (tn+1), if the two consecutive points are closer than a threshold value

set to λ0∆t, with λ0 = 3.3 ms−1. The temporal sequences of connected points X±j (tn)
define, after time-interpolation between the discrete time values, some level curves X±j (t).
When the matching procedure defined above finds no solution, the corresponding level
curve is ended.

This procedure can be repeated for different levels h, and yields different families of
level curves X(t) (see Fig. 9a). When the time interval of existence of a level curve (or
lifetime) is too short, that level curve is considered as irrelevant and is removed. Minimal
existence time of 1, 2 and 3 seconds have been retained (see Fig. 9b for the example of
a cutoff at 3 seconds). In order to remove further oscillations of the level curves (which
are associated to the spatial discretization of ∆x = 0.6 m), we filter them by convolution
in time with a truncated Gaussian function with a support larger than ∆x, adapting the
normalization of the Gaussian to accommodate for the beginning and the end of the level
curve (see Fig. 9c).

From the level curves X(t), we can then deduce the cluster velocity λ, that is the
velocity at which the level curves are transported (see Fig. 8b). One should rather speak
of ’cluster edge velocity’ since clusters have two boundaries, each of them having its own
speed, but as they are of the same order, we will use the term ’cluster velocity’ for short.
To estimate the cluster velocity λ on each level curve of density level h, we compute its
average slope. The slopes of the different connected components of a given level curve are
computed independently and later on averaged. A weighted average with weights equal to
the lifetime of the corresponding connected component is applied. This procedure leads
to an estimate of λ as a function of the specific density level h. Thus, if we restore the
indication ρ for the density level h, we obtain λ as a function of ρ.
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Figure 8: Cluster and cluster velocity. (a) Illustration of a cluster defined from a
density distribution ρ(x, tn) for a given threshold h. The edges of the cluster (i.e. X+

and X−) described the level curves of ρ(x, t). (b) Graphical representation of the cluster
velocity using the level curves of ρ. The picture depicts the edges (in yellow) of the cluster
(in red). The cluster edge velocity i.e. the slope of the cluster edge in the position-time
plane is given by f ′(h) and is illustrated by the green segment.
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Figure 9: Level curves of the density. Level curves X(t) for various levels h for the
replication displayed in Fig. 4 and clockwise pedestrian density ρ+. Horizontal axis is
space and vertical axis is time, running downwards. The color code corresponds to the
level height h, from blue (lower levels) to red (higher levels). (a): with no cutoff and
no filtering. (b): after cutoff (only level curves with life-time greater than 3 seconds are
kept) but before filtering. (c): after cutoff and filtering.
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