139 research outputs found
Identification of the PDI-Family Member ERp90 as an Interaction Partner of ERFAD
In the endoplasmic reticulum (ER), members of the protein disulfide isomerase (PDI) family perform critical functions during protein maturation. Herein, we identify the previously uncharacterized PDI-family member ERp90. In cultured human cells, we find ERp90 to be a soluble ER-luminal glycoprotein that comprises five potential thioredoxin (Trx)-like domains. Mature ERp90 contains 10 cysteine residues, of which at least some form intramolecular disulfides. While none of the Trx domains contain a canonical Cys-Xaa-Xaa-Cys active-site motif, other conserved cysteines could endow the protein with redox activity. Importantly, we show that ERp90 co-immunoprecipitates with ERFAD, a flavoprotein involved in ER-associated degradation (ERAD), through what is most likely a direct interaction. We propose that the function of ERp90 is related to substrate recruitment or delivery to the ERAD retrotranslocation machinery by ERFAD
Functional Relationship between Protein Disulfide Isomerase Family Members during the Oxidative Folding of Human Secretory Proteins
We systematically depleted PDI family members and show that whereas ERp72 and P5 contributed minimally to oxidative protein folding, PDI and ERp57 were the predominant catalysts. Depletion of PDI or ERp57 alone modestly delayed folding, but depletion of both led to generalized protein misfolding and degradation
Acute hypoxia induces apoptosis of pancreatic β-cell by activation of the unfolded protein response and upregulation of CHOP
The success of pancreatic β-cells transplantation to treat type 1 diabetes has been hindered by massive β-cell dysfunction and loss of β-cells that follows the procedure. Hypoxia-mediated cell death has been considered one of the main difficulties that must be overcome for transplantation to be regarded as a reliable therapy. Here we have investigated the mechanisms underlying β-cell death in response to hypoxia (1% O2). Our studies show that mouse insulinoma cell line 6 (Min6) cells undergo apoptosis with caspase-3 activation occurring as early as 2 h following exposure to hypoxia. Hypoxia induces endoplasmic reticulum stress in Min6 cells leading to activation of the three branches of the unfolded protein response pathway. In response to hypoxia the pro-apoptotic transcription factor C/EBP homologous protein (CHOP) is upregulated. The important role of CHOP in the apoptotic process was highlighted by the rescue of Min6 cells from hypoxia-mediated apoptosis observed in CHOP-knockdown cells. Culturing isolated pancreatic mouse islets at normoxia showed intracellular hypoxia with accumulation of hypoxia-inducible factor-1α and upregulation of CHOP, the latter one occurring as early as 4 h after isolation. Finally, we observed that pancreatic islets of type 2 db/db diabetic mice were more hypoxic than their counterpart in normoglycemic animals. This finding indicates that hypoxia-mediated apoptosis may occur in type 2 diabetes
The Amino-Terminus of Nitric Oxide Sensitive Guanylyl Cyclase α1 Does Not Affect Dimerization but Influences Subcellular Localization
BACKGROUND: Nitric oxide sensitive guanylyl cyclase (NOsGC) is a heterodimeric enzyme formed by an α- and a β₁-subunit. A splice variant (C-α₁) of the α₁-subunit, lacking at least the first 236 amino acids has been described by Sharina et al. 2008 and has been shown to be expressed in differentiating human embryonic cells. Wagner et al. 2005 have shown that the amino acids 61-128 of the α₁-subunit are mandatory for quantitative heterodimerization implying that the C-α₁-splice variant should lose its capacity to dimerize quantitatively. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we demonstrate preserved quantitative dimerization of the C-α₁-splice by co-purification with the β₁-subunit. In addition we used fluorescence resonance energy transfer (FRET) based on fluorescence lifetime imaging (FLIM) using fusion proteins of the β₁-subunit and the α₁-subunit or the C-α₁ variant with ECFP or EYFP. Analysis of the respective combinations in HEK-293 cells showed that the fluorescence lifetime was significantly shorter (≈0.3 ns) for α₁/β₁ and C-α₁/β₁ than the negative control. In addition we show that lack of the amino-terminus in the α₁ splice variant directs it to a more oxidized subcellular compartment. CONCLUSIONS/SIGNIFICANCE: We conclude that the amino-terminus of the α₁-subunit is dispensable for dimerization in-vivo and ex-vivo, but influences the subcellular trafficking
Protein disulphide isomerase-mediated grafting of cysteine-containing peptides onto over-bleached hair
The ability of Protein disulphide isomerase (PDI) to promote the grafting of two cysteine-containing peptides onto hair was investigated in order to develop an alternative treatment for over-bleached hair. The studied peptides were designed based on human keratin and human lung surfactant proteins and were linked to a fluorescent dye to facilitate visualisation of the grafting process and to assess hair penetration. The ability of the peptides to restore mechanical and thermal properties lost by repeated bleaching treatments was also studied. After eight bleaching treatments, hair samples displayed 42% less mechanical resistance, coupled with a decrease in α-helix denaturation enthalpies and temperatures. Hair surface damage following bleaching was visualized by scanning electron microscopy. Addition of PDI to the treatment formulations promoted peptide attachment to the hair via disulphide bonds, facilitating their penetration into the hair cortex, as observed by fluorescence microscopy. The proposed peptide treatment resulted in an increase in α-helix denaturation enthalpy in over-bleached hair, as well as an increase in both Young's modulus and tensile strength. Thus, mechanical and thermal properties were improved after the peptide treatment in the presence of PDI; suggesting that the formulations presented in this work are promising candidates for hair-care applications
Interplay of Substrate Retention and Export Signals in Endoplasmic Reticulum Quality Control
BACKGROUND: Endoplasmic reticulum (ER) quality control mechanisms are part of a comprehensive system to manage cell stress. The flux of molecules is monitored to retain folding intermediates and target misfolded molecules to ER-associated degradation (ERAD) pathways. The mechanisms of sorting remain unclear. While some proteins are retained statically, the classical model substrate CPY* is found in COPII transport vesicles, suggesting a retrieval mechanism for retention. However, its management can be even more dynamic. If ERAD is saturated under stress, excess CPY* traffics to the vacuole for degradation. These observations suggest that misfolded proteins might display different signals for their management. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the existence of a functional ER exit signal in the pro-domain of CPY*. Compromising its integrity causes ER retention through exclusion from COPII vesicles. The signal co-exists with other signals used for retention and degradation. Physiologically, the export signal is important for stress tolerance. Disabling it converts a benign protein into one that is intrinsically cytotoxic. CONCLUSIONS/SIGNIFICANCE: These data reveal the remarkable interplay between opposing signals embedded within ERAD substrate molecules and the mechanisms that decipher them. Our findings demonstrate the diversity of mechanisms deployed for protein quality control and maintenance of protein homeostasis
GADD34 keeps the mTOR pathway inactivated in endoplasmic reticulum stress related autophagy
The balance of protein synthesis and proteolysis (i.e. proteostasis) is maintained by a complex regulatory network in which mTOR (mechanistic target of rapamycin serine/threonine kinase) pathway and unfolded protein response are prominent positive and negative actors. The interplay between the two systems has been revealed; however the mechanistic details of this crosstalk are largely unknown. The aim of the present study was to investigate the elements of crosstalk during endoplasmic reticulum stress and to verify the key role of GADD34 in the connection with the mTOR pathway. Here, we demonstrate that a transient activation of autophagy is present in endoplasmic reticulum stress provoked by thapsigargin or tunicamycin, which is turned into apoptotic cell death. The transient phase can be characterized by the elevation of the autophagic marker LC3II/I, by mTOR inactivation, AMP-activated protein kinase activation and increased GADD34 level. The switch from autophagy to apoptosis is accompanied with the appearance of apoptotic markers, mTOR reactivation, AMP-activated protein kinase inactivation and a decrease in GADD34. Inhibition of autophagy by 3-methyladenine shortens the transient phase, while inhibition of mTOR by rapamycin or resveratrol prolongs it. Inhibition of GADD34 by guanabenz or transfection of the cells with siGADD34 results in down-regulation of autophagy-dependent survival and a quick activation of mTOR, followed by apoptotic cell death. The negative effect of GADD34 inhibition is diminished when guanabenz or siGADD34 treatment is combined with rapamycin or resveratrol addition. These data confirm that GADD34 constitutes a mechanistic link between endoplasmic reticulum stress and mTOR inactivation, therefore promotes cell survival during endoplasmic reticulum stress. © 2016 Holczer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Enzymatic Blockade of the Ubiquitin-Proteasome Pathway
Ubiquitin-dependent processes control much of cellular physiology. We show that expression of a highly active, Epstein-Barr virus-derived deubiquitylating enzyme (EBV-DUB) blocks proteasomal degradation of cytosolic and ER-derived proteins by preemptive removal of ubiquitin from proteasome substrates, a treatment less toxic than the use of proteasome inhibitors. Recognition of misfolded proteins in the ER lumen, their dislocation to the cytosol, and degradation are usually tightly coupled but can be uncoupled by the EBV-DUB: a misfolded glycoprotein that originates in the ER accumulates in association with cytosolic chaperones as a deglycosylated intermediate. Our data underscore the necessity of a DUB activity for completion of the dislocation reaction and provide a new means of inhibition of proteasomal proteolysis with reduced cytotoxicity.National Institutes of Health (U.S.)EMBO (long term Fellowship 2008-379)Boehringer Ingelheim Fond
Topological Analysis of Small Leucine-Rich Repeat Proteoglycan Nyctalopin
Nyctalopin is a small leucine rich repeat proteoglycan (SLRP) whose function is
critical for normal vision. The absence of nyctalopin results in the complete
form of congenital stationary night blindness. Normally, glutamate released by
photoreceptors binds to the metabotropic glutamate receptor type 6 (GRM6), which
through a G-protein cascade closes the non-specific cation channel, TRPM1, on
the dendritic tips of depolarizing bipolar cells (DBCs) in the retina.
Nyctalopin has been shown to interact with TRPM1 and expression of TRPM1 on the
dendritic tips of the DBCs is dependent on nyctalopin expression. In the current
study, we used yeast two hybrid and biochemical approaches to investigate
whether murine nyctalopin was membrane bound, and if so by what mechanism, and
also whether the functional form was as a homodimer. Our results show that
murine nyctalopin is anchored to the plasma membrane by a single transmembrane
domain, such that the LRR domain is located in the extracellular space
Characterization of the Conus bullatus genome and its venom-duct transcriptome
<p>Abstract</p> <p>Background</p> <p>The venomous marine gastropods, cone snails (genus <it>Conus</it>), inject prey with a lethal cocktail of conopeptides, small cysteine-rich peptides, each with a high affinity for its molecular target, generally an ion channel, receptor or transporter. Over the last decade, conopeptides have proven indispensable reagents for the study of vertebrate neurotransmission. <it>Conus bullatus </it>belongs to a clade of <it>Conus </it>species called <it>Textilia</it>, whose pharmacology is still poorly characterized. Thus the genomics analyses presented here provide the first step toward a better understanding the enigmatic <it>Textilia </it>clade.</p> <p>Results</p> <p>We have carried out a sequencing survey of the <it>Conus bullatus </it>genome and venom-duct transcriptome. We find that conopeptides are highly expressed within the venom-duct, and describe an <it>in silico </it>pipeline for their discovery and characterization using RNA-seq data. We have also carried out low-coverage shotgun sequencing of the genome, and have used these data to determine its size, genome-wide base composition, simple repeat, and mobile element densities.</p> <p>Conclusions</p> <p>Our results provide the first global view of venom-duct transcription in any cone snail. A notable feature of <it>Conus bullatus </it>venoms is the breadth of A-superfamily peptides expressed in the venom duct, which are unprecedented in their structural diversity. We also find SNP rates within conopeptides are higher compared to the remainder of <it>C. bullatus </it>transcriptome, consistent with the hypothesis that conopeptides are under diversifying selection.</p
- …