18 research outputs found

    Radar-based Road User Classification and Novelty Detection with Recurrent Neural Network Ensembles

    Full text link
    Radar-based road user classification is an important yet still challenging task towards autonomous driving applications. The resolution of conventional automotive radar sensors results in a sparse data representation which is tough to recover by subsequent signal processing. In this article, classifier ensembles originating from a one-vs-one binarization paradigm are enriched by one-vs-all correction classifiers. They are utilized to efficiently classify individual traffic participants and also identify hidden object classes which have not been presented to the classifiers during training. For each classifier of the ensemble an individual feature set is determined from a total set of 98 features. Thereby, the overall classification performance can be improved when compared to previous methods and, additionally, novel classes can be identified much more accurately. Furthermore, the proposed structure allows to give new insights in the importance of features for the recognition of individual classes which is crucial for the development of new algorithms and sensor requirements.Comment: 8 pages, 9 figures, accepted paper for 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, June 201

    Radar-based Feature Design and Multiclass Classification for Road User Recognition

    Full text link
    The classification of individual traffic participants is a complex task, especially for challenging scenarios with multiple road users or under bad weather conditions. Radar sensors provide an - with respect to well established camera systems - orthogonal way of measuring such scenes. In order to gain accurate classification results, 50 different features are extracted from the measurement data and tested on their performance. From these features a suitable subset is chosen and passed to random forest and long short-term memory (LSTM) classifiers to obtain class predictions for the radar input. Moreover, it is shown why data imbalance is an inherent problem in automotive radar classification when the dataset is not sufficiently large. To overcome this issue, classifier binarization is used among other techniques in order to better account for underrepresented classes. A new method to couple the resulting probabilities is proposed and compared to others with great success. Final results show substantial improvements when compared to ordinary multiclass classificationComment: 8 pages, 6 figure

    A Multi-Stage Clustering Framework for Automotive Radar Data

    Full text link
    Radar sensors provide a unique method for executing environmental perception tasks towards autonomous driving. Especially their capability to perform well in adverse weather conditions often makes them superior to other sensors such as cameras or lidar. Nevertheless, the high sparsity and low dimensionality of the commonly used detection data level is a major challenge for subsequent signal processing. Therefore, the data points are often merged in order to form larger entities from which more information can be gathered. The merging process is often implemented in form of a clustering algorithm. This article describes a novel approach for first filtering out static background data before applying a twostage clustering approach. The two-stage clustering follows the same paradigm as the idea for data association itself: First, clustering what is ought to belong together in a low dimensional parameter space, then, extracting additional features from the newly created clusters in order to perform a final clustering step. Parameters are optimized for filtering and both clustering steps. All techniques are assessed both individually and as a whole in order to demonstrate their effectiveness. Final results indicate clear benefits of the first two methods and also the cluster merging process under specific circumstances.Comment: 8 pages, 5 figures, accepted paper for 2019 IEEE 22nd Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, October 201

    Automated Ground Truth Estimation For Automotive Radar Tracking Applications With Portable GNSS And IMU Devices

    Full text link
    Baseline generation for tracking applications is a difficult task when working with real world radar data. Data sparsity usually only allows an indirect way of estimating the original tracks as most objects' centers are not represented in the data. This article proposes an automated way of acquiring reference trajectories by using a highly accurate hand-held global navigation satellite system (GNSS). An embedded inertial measurement unit (IMU) is used for estimating orientation and motion behavior. This article contains two major contributions. A method for associating radar data to vulnerable road user (VRU) tracks is described. It is evaluated how accurate the system performs under different GNSS reception conditions and how carrying a reference system alters radar measurements. Second, the system is used to track pedestrians and cyclists over many measurement cycles in order to generate object centered occupancy grid maps. The reference system allows to much more precisely generate real world radar data distributions of VRUs than compared to conventional methods. Hereby, an important step towards radar-based VRU tracking is accomplished.Comment: 10 pages, 9 figures, accepted paper for 2019 20th International Radar Symposium (IRS), Ulm, Germany, June 2019. arXiv admin note: text overlap with arXiv:1905.1121

    A Vehicular Environment Perception Platform for Safety Related Applications

    Get PDF
    AbstractThe aim of this paper is to present a perception platform developed for vehicular safety applications. The work described here is part of the work carried out in the interactIVe project and more specifically inside the PERCEPTION sub project. InteractIVe is a large scale integrating project co-funded by the European Commission as part of the FP7-ICT for Safety and Energy Efficiency in Mobility. One of the main objectives of this project is the implementation of a reference perception platform with a general purpose interface to the applications

    Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar

    Full text link
    Conventional sensor systems record information about directly visible objects, whereas occluded scene components are considered lost in the measurement process. Non-line-of-sight (NLOS) methods try to recover such hidden objects from their indirect reflections - faint signal components, traditionally treated as measurement noise. Existing NLOS approaches struggle to record these low-signal components outside the lab, and do not scale to large-scale outdoor scenes and high-speed motion, typical in automotive scenarios. In particular, optical NLOS capture is fundamentally limited by the quartic intensity falloff of diffuse indirect reflections. In this work, we depart from visible-wavelength approaches and demonstrate detection, classification, and tracking of hidden objects in large-scale dynamic environments using Doppler radars that can be manufactured at low-cost in series production. To untangle noisy indirect and direct reflections, we learn from temporal sequences of Doppler velocity and position measurements, which we fuse in a joint NLOS detection and tracking network over time. We validate the approach on in-the-wild automotive scenes, including sequences of parked cars or house facades as relay surfaces, and demonstrate low-cost, real-time NLOS in dynamic automotive environments.Comment: First three authors contributed equally; Accepted at CVPR 202

    Results of a Precrash Application Based on Laser Scanner and Short-Range Radars

    Get PDF
    International audienceIn this paper, we present a vehicle safety application based on data gathered by a laser scanner and two short-range radars that recognize unavoidable collisions with stationary objects before they take place to trigger restraint systems. Two different software modules that perform the processing of raw data and deliver a description of the vehicle's environment are compared. A comprehensive experimental evaluation based on relevant crash and noncrash scenarios is presented

    Online Localization and Mapping with Moving Object Tracking in Dynamic Outdoor Environments

    Get PDF
    International audienceIn this paper, we present a real-time algorithm for online simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic outdoor environments from a moving vehicle equipped with laser sensor and odometry. To correct vehicle location from odometry we introduce a new fast implementation of incremental scan matching method that can work reliably in dynamic outdoor environments. After a good vehicle location is estimated, the surrounding map is updated incrementally and moving objects are detected without a priori knowledge of the targets. Detected moving objects are finally tracked using Global Nearest Neighborhood (GNN) method. The experimental results on datasets collected from different scenarios such as: urban streets, country roads and highways demonstrate the efficiency of the proposed algorithm

    Enhancement of doppler unambiguity for chirp-sequence modulated TDM-MIMO radars

    No full text
    Current automotive radar sensors enhance the angular resolution using a multiple-input multiple-output approach. The often applied time-division multiplexing scheme has the drawback of a reduced unambiguous Doppler velocity proportional to the number of transmitters. In this paper, a signal processing scheme is proposed to regain the same unambiguous Doppler as in the single-input multiple-output case with only one transmit antenna. Simulation and measurement results are shown to prove that the signal processing leads to an enhanced unambiguous Doppler velocity estimation
    corecore