71 research outputs found
Improvement in visual search with practice: Mapping learning-related changes in neurocognitive stages of processing
© 2015 the authors. Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus–response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior–contralateral component (N2pc, 170–250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300–400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance
Mapping the Semantic Structure of Cognitive Neuroscience
Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research
Kondo Effect in Electromigrated Gold Break Junctions
We present gate-dependent transport measurements of Kondo impurities in bare
gold break junctions, generated with high yield using an electromigration
process that is actively controlled. Thirty percent of measured devices show
zero-bias conductance peaks. Temperature dependence suggests Kondo temperatures
\~7K. The peak splitting in magnetic field is consistent with theoretical
predictions for g=2, though in many devices the splitting is offset from 2guB
by a fixed energy. The Kondo resonances observed here may be due to
atomic-scale metallic grains formed during electromigration.Comment: 5 pages, 3 figure
Computer‐assisted Curie scoring for metaiodobenzylguanidine (MIBG) scans in patients with neuroblastoma
BackgroundRadiolabeled metaiodobenzylguanidine (MIBG) is sensitive and specific for detecting neuroblastoma. The extent of MIBG‐avid disease is assessed using Curie scores. Although Curie scoring is prognostic in patients with high‐risk neuroblastoma, there is no standardized method to assess the response of specific sites of disease over time. The goal of this study was to develop approaches for Curie scoring to facilitate the calculation of scores and comparison of specific sites on serial scans.ProcedureWe designed three semiautomated methods for determining Curie scores, each with increasing degrees of computer assistance. Method A was based on visual assessment and tallying of MIBG‐avid lesions. For method B, scores were tabulated from a schematic that associated anatomic regions to MIBG‐positive lesions. For method C, an anatomic mesh was used to mark MIBG‐positive lesions with automatic assignment and tallying of scores. Five imaging physicians experienced in MIBG interpretation scored 38 scans using each method, and the feasibility and utility of the methods were assessed using surveys.ResultsThere was good reliability between methods and observers. The user‐interface methods required 57 to 110 seconds longer than the visual method. Imaging physicians indicated that it was useful that methods B and C enabled tracking of lesions. Imaging physicians preferred method B to method C because of its efficiency.ConclusionsWe demonstrate the feasibility of semiautomated approaches for Curie score calculation. Although more time was needed for strategies B and C, the ability to track and document individual MIBG‐positive lesions over time is a strength of these methods.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146464/1/pbc27417.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146464/2/pbc27417_am.pd
Nonlinear Response of a Kondo system: Direct and Alternating Tunneling Currents
Non - equilibrium tunneling current of an Anderson impurity system subject to
both constant and alternating electric fields is studied. A time - dependent
Schrieffer - Wolff transformation maps the time - dependent Anderson
Hamiltonian onto a Kondo one. Perturbation expansion in powers of the Kondo
coupling strength is carried out up to third order, yielding a remarkably
simple analytical expression for the tunneling current. It is found that the
zero - bias anomaly is suppressed by an ac - field. Both dc and the first
harmonic are equally enhanced by the Kondo effect, while the higher harmonics
are relatively small. These results are shown to be valid also below the Kondo
temperature.Comment: 7 pages, RevTeX, 3 PS figures attached, the article has been
significantly developed: time - dependent Schrieffer - Wolff transformation
is presented in the full form, the results are applied to the change in the
direct current induced by an alternating field (2 figures are new
Action video game playing is associated with improved visual sensitivity, but not alterations in visual sensory memory
Action video game playing has been experimentally linked to a number of perceptual and cognitive improvements. These benefits are captured through a wide range of psychometric tasks and have led to the proposition that action video game experience may promote the ability to extract statistical evidence from sensory stimuli. Such an advantage could arise from a number of possible mechanisms: improvements in visual sensitivity, enhancements in the capacity or duration for which information is retained in visual memory, or higher-level strategic use of information for decision making. The present study measured the capacity and time course of visual sensory memory using a partial report performance task as a means to distinguish between these three possible mechanisms. Sensitivity measures and parameter estimates that describe sensory memory capacity and the rate of memory decay were compared between individuals who reported high evels and low levels of action video game experience. Our results revealed a uniform increase in partial report accuracy at all stimulus-to-cue delays for action video game players but no difference in the rate or time course of the memory decay. The present findings suggest that action video game playing may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …