5,123 research outputs found
Evidence cross-validation and Bayesian inference of MAST plasma equilibria
In this paper, current profiles for plasma discharges on the Mega-Ampere
Spherical Tokamak (MAST) are directly calculated from pickup coil, flux loop
and Motional-Stark Effect (MSE) observations via methods based in the
statistical theory of Bayesian analysis. By representing toroidal plasma
current as a series of axisymmetric current beams with rectangular
cross-section and inferring the current for each one of these beams,
flux-surface geometry and q-profiles are subsequently calculated by elementary
application of Biot-Savart's law. The use of this plasma model in the context
of Bayesian analysis was pioneered by Svensson and Werner on the Joint-European
Tokamak (JET) [J. Svensson and A. Werner. Current tomography for axisymmetric
plasmas. Plasma Physics and Controlled Fusion, 50(8):085002, 2008]. In
this framework, linear forward models are used to generate diagnostic
predictions, and the probability distribution for the currents in the
collection of plasma beams was subsequently calculated directly via application
of Bayes' formula. In this work, we introduce a new diagnostic technique to
identify and remove outlier observations associated with diagnostics falling
out of calibration or suffering from an unidentified malfunction. These
modifications enable good agreement between Bayesian inference of the last
closed flux-surface (LCFS) with other corroborating data, such as such as that
from force balance considerations using EFIT++ [L. Appel et al., Proc. 33rd EPS
Conf., Rome, Italy, 2006]. In addition, this analysis also yields errors on the
plasma current profile and flux-surface geometry, as well as directly
predicting the Shafranov shift of the plasma core.This work was jointly funded by the Australian Government
through International Science Linkages Grant No.
CG130047, the Australian National University, the United
Kingdom Engineering and Physical Sciences Research
Council under Grant No. EP/G003955, and by the European
Communities under the contract of Association between EURATOM and CCFE
Model Data Fusion: developing Bayesian inversion to constrain equilibrium and mode structure
Recently, a new probabilistic "data fusion" framework based on Bayesian
principles has been developed on JET and W7-AS. The Bayesian analysis framework
folds in uncertainties and inter-dependencies in the diagnostic data and signal
forward-models, together with prior knowledge of the state of the plasma, to
yield predictions of internal magnetic structure. A feature of the framework,
known as MINERVA (J. Svensson, A. Werner, Plasma Physics and Controlled Fusion
50, 085022, 2008), is the inference of magnetic flux surfaces without the use
of a force balance model. We discuss results from a new project to develop
Bayesian inversion tools that aim to (1) distinguish between competing
equilibrium theories, which capture different physics, using the MAST spherical
tokamak; and (2) test the predictions of MHD theory, particularly mode
structure, using the H-1 Heliac.Comment: submitted to Journal of Plasma Fusion Research 10/11/200
Quantum coherence and carriers mobility in organic semiconductors
We present a model of charge transport in organic molecular semiconductors
based on the effects of lattice fluctuations on the quantum coherence of the
electronic state of the charge carrier. Thermal intermolecular phonons and
librations tend to localize pure coherent states and to assist the motion of
less coherent ones. Decoherence is thus the primary mechanism by which
conduction occurs. It is driven by the coupling of the carrier to the molecular
lattice through polarization and transfer integral fluctuations as described by
the hamiltonian of Gosar and Choi. Localization effects in the quantum coherent
regime are modeled via the Anderson hamiltonian with correlated diagonal and
non-diagonal disorder leading to the determination of the carrier localization
length. This length defines the coherent extension of the ground state and
determines, in turn, the diffusion range in the incoherent regime and thus the
mobility. The transfer integral disorder of Troisi and Orlandi can also be
incorporated. This model, based on the idea of decoherence, allowed us to
predict the value and temperature dependence of the carrier mobility in
prototypical organic semiconductors that are in qualitative accord with
experiments
Non-Destructive Probing of Rabi Oscillations on the Cesium Clock Transition near the Standard Quantum Limit
We report on non-destructive observation of Rabi oscillations on the Cs clock
transition. The internal atomic state evolution of a dipole-trapped ensemble of
cold atoms is inferred from the phase shift of a probe laser beam as measured
using a Mach-Zehnder interferometer. We describe a single color as well as a
two-color probing scheme. Using the latter, measurements of the collective
pseudo-spin projection of atoms in a superposition of the clock states are
performed and the observed spin fluctuations are shown to be close to the
standard quantum limit.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Binary pattern tile set synthesis is NP-hard
In the field of algorithmic self-assembly, a long-standing unproven
conjecture has been that of the NP-hardness of binary pattern tile set
synthesis (2-PATS). The -PATS problem is that of designing a tile assembly
system with the smallest number of tile types which will self-assemble an input
pattern of colors. Of both theoretical and practical significance, -PATS
has been studied in a series of papers which have shown -PATS to be NP-hard
for , , and then . In this paper, we close the
fundamental conjecture that 2-PATS is NP-hard, concluding this line of study.
While most of our proof relies on standard mathematical proof techniques, one
crucial lemma makes use of a computer-assisted proof, which is a relatively
novel but increasingly utilized paradigm for deriving proofs for complex
mathematical problems. This tool is especially powerful for attacking
combinatorial problems, as exemplified by the proof of the four color theorem
by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and
Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by
Konev and Lisitsa using computer programs. We utilize a massively parallel
algorithm and thus turn an otherwise intractable portion of our proof into a
program which requires approximately a year of computation time, bringing the
use of computer-assisted proofs to a new scale. We fully detail the algorithm
employed by our code, and make the code freely available online
Odd Parity and Line Nodes in Heavy Fermion Superconductors
Group theory arguments have demonstrated that a general odd parity order
parameter cannot have line nodes in the presence of spin-orbit coupling. In
this paper, it is shown that these arguments do not hold on the
zone face of a hexagonal close packed lattice. In particular, three of the six
odd parity representations vanish identically on this face. This has potential
relevance to the heavy fermion superconductor .Comment: 5 pages, revte
Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt
We calculate the effect of scattering on the static, exchange enhanced, spin
susceptibility and show that in particular spin orbit scattering leads to a
reduction of the giant moments and spin glass freezing temperature due to
dilute magnetic impurities. The harmful spin fluctuation contribution to the
intra-grain pairing interaction is strongly reduced opening the way for BCS
superconductivity. We are thus able to explain the superconducting and magnetic
properties recently observed in granular Pt as due to scattering effects in
single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter
The Diffusion of Humans and Cultures in the Course of the Spread of Farming
The most profound change in the relationship between humans and their
environment was the introduction of agriculture and pastoralism. [....] For an
understanding of the expansion process, it appears appropriate to apply a
diffusive model. Broadly, these numerical modeling approaches can be catego-
rized in correlative, continuous and discrete. Common to all approaches is the
comparison to collections of radiocarbon data that show the apparent wave of
advance of the transition to farming. However, these data sets differ in entry
density and data quality. Often they disregard local and regional specifics and
research gaps, or dating uncertainties. Thus, most of these data bases may only
be used on a very general, broad scale. One of the pitfalls of using
irregularly spaced or irregularly documented radiocarbon data becomes evident
from the map generated by Fort (this volume, Chapter 16): while the general
east-west and south-north trends become evident, some areas appear as having
undergone anomalously early transitions to farming. This may be due to faulty
entries into the data base or regional problems with radiocarbon dating, if not
unnoticed or undocumented laboratory mistakes.Comment: 20 pages, 5 figures, submitted to Diffusive Spreading in Nature,
Technology and Society, edited by Armin Bunde, J\"urgen Caro, J\"org
K\"arger, Gero Vogl, Chapter 1
- âŠ