15 research outputs found

    Coupling of organic and inorganic aerosol systems and the effect on gas-particle partitioning in the southeastern US

    Get PDF
    Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2  ×  sulfate, R_(N∕2S)  ≈  0.8 to 0.9) with approximately 70 % of total ammonia and ammonium (NH_x) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H^+]_(air) (H^+ in µg m^(−3) air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid–liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic–organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH  =  1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C  ≥  0.6) compounds including several isoprene-derived tracers as well as levoglucosan but decrease particle-phase partitioning for low O : C, monoterpene-derived species

    Coupling of organic and inorganic aerosol systems and the effect on gas-particle partitioning in the southeastern US

    Get PDF
    Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2  ×  sulfate, R_(N∕2S)  ≈  0.8 to 0.9) with approximately 70 % of total ammonia and ammonium (NH_x) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H^+]_(air) (H^+ in µg m^(−3) air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid–liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic–organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH  =  1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C  ≥  0.6) compounds including several isoprene-derived tracers as well as levoglucosan but decrease particle-phase partitioning for low O : C, monoterpene-derived species

    Constraining Chemical Transport PM2.5 Modeling Outputs Using Surface Monitor Measurements and Satellite Retrievals: Application over the San Joaquin Valley

    No full text
    Advances in satellite retrieval of aerosol type can improve the accuracy of near-surface air quality characterization by providing broad regional context and decreasing metric uncertainties and errors. The frequent, spatially extensive and radiometrically consistent instantaneous constraints can be especially useful in areas away from ground monitors and progressively downwind of emission sources. We present a physical approach to constraining regional-scale estimates of PM(2.5), its major chemical component species estimates, and related uncertainty estimates of chemical transport model (CTM; e.g., the Community Multi-scale Air Quality Model) outputs. This approach uses ground-based monitors where available, combined with aerosol optical depth and qualitative constraints on aerosol size, shape, and light-absorption properties from the Multi-angle Imaging SpectroRadiometer (MISR) on the NASA Earth Observing System's Terra satellite. The CTM complements these data by providing complete spatial and temporal coverage. Unlike widely used approaches that train statistical regression models, the technique developed here leverages CTM physical constraints such as the conservation of aerosol mass and meteorological consistency, independent of observations. The CTM also aids in identifying relationships between observed species concentrations and emission sources. Aerosol air mass types over populated regions of central California are characterized using satellite data acquired during the 2013 San Joaquin field deployment of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project. We investigate the optimal application of incorporating 275m horizontal-resolution aerosol air-mass-type maps and total-column aerosol optical depth from the MISR Research Aerosol retrieval algorithm (RA) into regional-scale CTM output. The impact on surface PM(2.5) fields progressively downwind of large single sources is evaluated using contemporaneous surface observations. Spatiotemporal R2 and RMSE values for the model, constrained by both satellite and surface monitor measurements based on 10-fold cross-validation, are 0.79 and 0.33 for PM(2.5), 0.88 and 0.65 for NO3(), 0.78 and 0.23 for SO4(2), 1.00 and 1.01 for NH4(+), 0.73 and 0.23 for OC, and 0.31 and 0.65 for EC, respectively. Regional cross-validation temporal and spatiotemporal R2 results for the satellite-based PM(2.5) improve by 30% and 13%, respectively, in comparison to unconstrained CTM simulations and provide finer spatial resolution. SO4(2) cross-validation values showed the largest spatial and spatiotemporal R(2) improvement, with a 43% increase. Assessing this physical technique in a well-instrumented region opens the possibility of applying it globally, especially over areas where surface air quality measurements are scarce or entirely absent

    Improving the particle dry deposition scheme in the CMAQ photochemical modeling system

    No full text
    Dry deposition of atmospheric aerosols in large-scale models is a critical, but highly uncertain, sink process with a strong dependence on particle size, meteorological conditions, and land surface properties. This study investigates the particle dry deposition scheme implemented in the standard Community Multiscale Air Quality (CMAQ) model v5.2.1, characterizes its underlying parameterized components with comparison to a similar scheme in a contemporary regional-scale model, and proposes two updated schemes that are then evaluated with available ambient particle deposition velocity (Vd) measurements. Both updated schemes reduce the surprisingly strong dependence of deposition velocity on the aerosol mode width, with one scheme further introducing a dependence on vegetation coverage that is broadly consistent with variability in observations between vegetated and non-vegetated surfaces. Compared to the base scheme, the updated scheme with vegetation dependence increases Vd for submicron particles and decreases it for larger particles by an average of 37% and −66%, respectively. This scheme performs statistically better than the base scheme, reducing fractional biases by 56%–97% for vegetated land-use types and has roughly equivalent performance over water. The base and updated schemes are tested with three annual CMAQ (v5.2.1) simulations for the year 2011; predicted ambient aerosol concentrations are evaluated with routine monitoring network observations and predicted dry deposition fluxes are evaluated with data from the Clean Air Status and Trends Network (CASTNET). The updated scheme with vegetation dependence reduces negative fractional biases for PM10 by 41% and positive fractional biases for PM2.5 organic carbon by 15%. This scheme has been incorporated into the most recent publicly accessible versions of CMAQ (v5.3 and beyond) to replace the scheme used in previous versions of CMAQ (v4.5 through v5.2.1)
    corecore