26 research outputs found

    Retinal vascular tortuosity in schizophrenia and bipolar disorder

    Get PDF
    \u3cp\u3eThe micro-vasculature of retina and brain share common morphological, physiological, and pathological properties. Retina being easily accessible, retinal vascular examination provides an indirect assessment of cerebral vasculature. Considering the high prevalence of vascular morbidity in SCZ and BD a few studies have examined retinal vascular caliber and have reported increased retinal venular caliber in schizophrenia (SCZ). Retinal vascular tortuosity could serve as a better structural measure than caliber as it is static and less susceptible to pulse period variations. However, to date, no study has examined retinal vascular tortuosity in SCZ and bipolar disorder (BD). Hence, we examined retinal vascular tortuosity in comparison with healthy volunteers (HV). We included 255 subjects (78 HV, 79 SCZ, and 86 BD) in the age range of 18 to 50 years. Trained personnel acquired images using a non-mydriatic fundus camera. To measure the average retinal arteriolar tortuosity index (RATI) and retinal venular tortuosity index (RVTI), we used a previously validated, semi-automatic algorithm. The results showed significant differences across the three groups in RATI but not in RVTI; both BD and SCZ had significantly increased RATI compared to HV. There was also a significant difference between SCZ and BD, with BD having higher RATI. If shown to be of predictive utility in future longitudinal studies, it has the potential to identify patients at risk of development of adverse vascular events. As retinal vascular imaging is non-invasive and inexpensive, it could serve as a proxy marker and window to cerebral vasculature.\u3c/p\u3

    NeuroBridge ontology: computable provenance metadata to give the long tail of neuroimaging data a FAIR chance for secondary use

    Get PDF
    Background Despite the efforts of the neuroscience community, there are many published neuroimaging studies with data that are still not findable or accessible. Users face significant challenges in reusing neuroimaging data due to the lack of provenance metadata, such as experimental protocols, study instruments, and details about the study participants, which is also required for interoperability. To implement the FAIR guidelines for neuroimaging data, we have developed an iterative ontology engineering process and used it to create the NeuroBridge ontology. The NeuroBridge ontology is a computable model of provenance terms to implement FAIR principles and together with an international effort to annotate full text articles with ontology terms, the ontology enables users to locate relevant neuroimaging datasets. Methods Building on our previous work in metadata modeling, and in concert with an initial annotation of a representative corpus, we modeled diagnosis terms (e.g., schizophrenia, alcohol usage disorder), magnetic resonance imaging (MRI) scan types (T1-weighted, task-based, etc.), clinical symptom assessments (PANSS, AUDIT), and a variety of other assessments. We used the feedback of the annotation team to identify missing metadata terms, which were added to the NeuroBridge ontology, and we restructured the ontology to support both the final annotation of the corpus of neuroimaging articles by a second, independent set of annotators, as well as the functionalities of the NeuroBridge search portal for neuroimaging datasets. Results The NeuroBridge ontology consists of 660 classes with 49 properties with 3,200 axioms. The ontology includes mappings to existing ontologies, enabling the NeuroBridge ontology to be interoperable with other domain specific terminological systems. Using the ontology, we annotated 186 neuroimaging full-text articles describing the participant types, scanning, clinical and cognitive assessments. ConclusionThe NeuroBridge ontology is the first computable metadata model that represents the types of data available in recent neuroimaging studies in schizophrenia and substance use disorders research; it can be extended to include more granular terms as needed. This metadata ontology is expected to form the computational foundation to help both investigators to make their data FAIR compliant and support users to conduct reproducible neuroimaging research

    NeuroBridge: a prototype platform for discovery of the long-tail neuroimaging data

    Get PDF
    Introduction Open science initiatives have enabled sharing of large amounts of already collected data. However, significant gaps remain regarding how to find appropriate data, including underutilized data that exist in the long tail of science. We demonstrate the NeuroBridge prototype and its ability to search PubMed Central full-text papers for information relevant to neuroimaging data collected from schizophrenia and addiction studies. Methods The NeuroBridge architecture contained the following components: (1) Extensible ontology for modeling study metadata: subject population, imaging techniques, and relevant behavioral, cognitive, or clinical data. Details are described in the companion paper in this special issue; (2) A natural-language based document processor that leveraged pre-trained deep-learning models on a small-sample document corpus to establish efficient representations for each article as a collection of machine-recognized ontological terms; (3) Integrated search using ontology-driven similarity to query PubMed Central and NeuroQuery, which provides fMRI activation maps along with PubMed source articles. Results The NeuroBridge prototype contains a corpus of 356 papers from 2018 to 2021 describing schizophrenia and addiction neuroimaging studies, of which 186 were annotated with the NeuroBridge ontology. The search portal on the NeuroBridge website https://neurobridges.org/ provides an interactive Query Builder, where the user builds queries by selecting NeuroBridge ontology terms to preserve the ontology tree structure. For each return entry, links to the PubMed abstract as well as to the PMC full-text article, if available, are presented. For each of the returned articles, we provide a list of clinical assessments described in the Section “Methods” of the article. Articles returned from NeuroQuery based on the same search are also presented. Conclusion The NeuroBridge prototype combines ontology-based search with natural-language text-mining approaches to demonstrate that papers relevant to a user’s research question can be identified. The NeuroBridge prototype takes a first step toward identifying potential neuroimaging data described in full-text papers. Toward the overall goal of discovering “enough data of the right kind,” ongoing work includes validating the document processor with a larger corpus, extending the ontology to include detailed imaging data, and extracting information regarding data availability from the returned publications and incorporating XNAT-based neuroimaging databases to enhance data accessibility

    Interdisciplinarity in New Product Development in an Indian MedTech Perspective:Gap and the Solution

    No full text
    The medical device industry is a niche field globally and among the fastest growing industries in India. It requires specialised and interdisciplinary skills, as well as knowledge for innovation of new product development. New product development has four key phases: need finding, concept generation, engineering and validation. The first two phases require broad vertical and lateral thinking to come up with innovative plus appropriate solutions. Thus, multidisciplinary teams made up of experienced individuals with interdisciplinary knowledge enhance the phase outputs. The next two phases are iterative, usually requiring management of multiple subsystems, across technical disciplines and system integration. Without interdisciplinary product members and technical leaders, product development is not optimised. This leads to numerous iterations - loss of time, money. The industry struggles to find these interdisciplinary resources and building this capacity today takes a decade in India, with the entire burden falling on the industry. In well-developed medical device markets, higher education has introduced application-centric courses with cross-disciplinary curriculums. Such a structure allows students to gain valuable skills and understanding of the industry as a whole. Developed ecosystems have no shortage of experts available who serve as technical leaders. Developing countries like India have a very young indigenous medical device industry. In such nations, private companies struggle to find experienced individuals capable of interdisciplinary thinking and problem-solving. In this paper, we present India's current Medtech perspective, and the industry member's experiences through case studies and interviews. An outline for an academic model to meet the requirement of the industry has been presented

    Multimodel Biometrics Using ECG and Fingerprint

    No full text
    system is a very important recognition system which is used for individual verification and identification. Various types of biometric traits are used in today's world, in which some are used for commercial purpose and few used for verification purpose. Existing authentication techniques are suffer from different errors like mismatch image, spoofing, falsification in the data, to solve this errors the combination of Electrocardiography(ECG) and fingerprint multimodal is introduced. This proposed modal produces effective recognition system when compared to individual recognition system. The proposed multimodal recognition system provides optimum results compared to the individual recognition system which yields better results for authentication compared to the Existing system. Keywordsm (ECG), Fingerprint, Authentication, Multimodal

    Chloramine-T-induced oxidation of Rizatriptan Benzoate: An integral chemical and spectroscopic study of products, mechanisms and kinetics

    No full text
    Oxidation is a prominent degradation route of biological molecules that produces a wide variety of degradation products through complex mechanisms and hence qualifies to be a vital pharmaceutical process. This article presents the kinetic and spectral study of the oxidation of an antimigraine drug rizatriptan benzoate (RTB) in an acid medium with the aid of a mild biocidal oxidant N-chloro-p-toluenesulfonamide, referred to as chloramine-T (CAT). The kinetic experimental studies reported here, such as fractional order dependency on RTB, pseudo-first-order dependency on CAT, negative fractional order dependency on the acid medium, independent of the rate on the ionic concentration and increasing rate with increasing dielectric constant, have led to the evaluation of stoichiometry, thermodynamic properties, and derivation of a rate equation. Effective interpretation of UV–Vis, IR, 1H and 13C NMR investigation was performed to identify and confirm the identity of the oxidation products and discuss the involved plausible mechanism. This study provides an extended insight into the products of oxidation formed during the metabolism of RTB

    Acmella oleracea induced nanostructured Ca2Fe2O5 for evaluation of photo catalytic degradation of cardiovascular drugs and bio toxicity

    No full text
    Biosynthesis of nanoparticles is increasingly becoming popular due to the demand for sustainable technologies worldwide. In the present investigation, Acmella oleracea plant extract fuelled combustion technique followed by calcination at 600 °C was adopted to prepare nanocrystalline Ca2Fe2O5. The prepared nano compound was characterised using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Ultra Violet (UV) spectroscopy, Infrared (IR) spectroscopy and its role was assessed for photocatalytic pollutant degradation along with bactericidal action in the concentration range of 1 μg/mL to 320 μg/mL. The photocatalytic degradation efficiency of pollutant drugs Clopidogrel Bisulphate and Asprin used for cardiovascular disorders is around 80% with 10 mg/L photocatalyst. The results showed that the photocatalytic activity increased with rising pH from 4, to 10, along with a significant antibacterial action against Enterococcus faecalis bacteria and a slight cytotoxic effect at high concentrations. The antibacterial property was reinforced by Minimum inhibitory concentrations (MIC) and Minimum bactericidal concentrations (MBC) studies with an average value of 0.103 at 600 nm which was further proved by significant anti-biofilm activeness. Adhesion tests in conjunction with cryogenic-scanning electron microscopy displayed a morphological change through agglomeration that caused an expansion in nano particles from 181 nm to 223.6 nm due to internalization followed by inactivation of bacteria. In addition, the non-toxicity of nano Ca2Fe2O5 was confirmed by subtle cytological changes in microscopic images of Allium Cepa root cells in the concentration range 0.01–100 μg/mL and a slight inhibition in HeLa cell proliferation indicated by IC50 value of 170.94 μg/mL. In total, the current investigation for the first time reveals the application of bio based synthesis of Nano Ca2Fe2O5 to new possibilities in bioremediation namely degrading cardiovascular pharmaceutical pollutants, endodontic antibacterial action and cytological activity
    corecore