9 research outputs found

    Fertilidade do solo em sistemas silvipastoris integrando leguminosas arbóreas com capim-braquiária (Urochloa decumbens Stapf. R. Webster)

    Get PDF
    Silvopastoral Systems (SPS) can increase overall productivity and generate continuous income in order to stimulate simultaneous growth and development of trees, forage and livestock. Moreover, the SPS with tree legumes would be important for add nutrients to the system, mainly N, and ensure the soil health and quality. Soil properties were assessed in two SPS, implanted in 2011, using tree legumes and Urochloa decumbens Stapf. R. Webster (Signalgrass). Treatments were Signalgrass + Mimosa caesalpiniifolia Benth (Sabia) and Signalgrass + Gliricidia sepium (Jacq.) Kunth ex Walp. (Gliricidia), and they were allocated in a randomized complete block design, with three replications. Soil was sampled in 2013, 2017, and 2018, at 0, 4, and 8 m along transects perpendicular to tree double rows, from 0- to 20- and 20- to 40-cm layers. Soil chemical properties included pH, P, K+, Ca2+, Mg2+, Al3+, H++Al3+, cation exchange capacity (CEC), and base saturation. In addition, light fraction of soil organic matter (LF-SOM), soil basal respiration (SBR), and natural abundance of 13C of the respired CO2 (δ13C-CO2) were analyzed. Soil pH (5.3, 5.2, 5.1), P (11.3, 7.2, 3.6 mg dm-3), and CECeffective (5.8, 5.1, 5.0 cmolc dm-3) decreased (P < 0.05) along the years 2013, 2017, and 2018, respectively. In 2018, the LF-SOM and δ13C-CO2 was greater in Sabia (1.1 g kg-1 and -16.4‰) compared to Gliricidia (0.7 g kg-1 and -18.2‰). Silvopastoral systems reduced soil fertility regardless of the tree legume species used as result of biomass nutrient stock, without maintenance fertilization. Sabia had greater deposition of LF-SOM, without increasing SBR, providing potential for microbial C use efficiency. Enriched C-CO2 isotope composition shows an efficient SOM oxidize in SPS with Gliricidia or Sabia. This information can contribute to the assessments related to CO2 balance and C retention. Both SPS contribute to C sequestration.Los Sistemas Silvopastoriles (SSP) pueden aumentar la productividad general y generar ingresos. Además, SSP con leguminosas arbóreas adicionan nutrientes al sistema, principalmente N, asegurando la salud y calidad del suelo. Propiedades del suelo fueron evaluadas en dos SSP utilizando leguminosas arbóreas en asociación con Urochloa decumbens Stapf. R. Webster (Barrera). Los tratamientos fueron Barrera + Mimosa caesalpiniifolia Benth (Sabiá) y Barrera + Gliricidia sepium (Jacq.) Kunth ex Walp. (Gliricidia), distribuidos en un diseño de bloques aleatorizados (tres repeticiones). Se realizaron colectas de suelo en los años 2013, 2017 y 2018, a 0, 4 y 8 m en transectos perpendiculares a las hileras de árboles, en las profundidades de 0-20 y 20-40 cm. Propiedades químicas del suelo evaluadas incluyeron pH, P, K+, Ca2+, Mg2+, Al3+, H++Al3+, capacidad de intercambio catiónico (CIC) y saturación de bases. Se analizaron la fracción activa de la materia orgánica (FA-MOS), respiración basal (RBS) y abundancia natural de 13C del CO2 respirado (δ13C-CO2). El pH (5.3, 5.2, 5.1), P (11.3, 7.2, 3.6 mg dm-3) y la CICefectiva (5.8, 5.1, 5.0 cmolc dm-3) disminuyeron (P < 0.05) a través de los años 2013, 2017 y 2018, respectivamente. En 2018, la FA-MOS y δ13C-CO2 fue mayor en Sabiá (1,1 g kg-1 y -16,4‰) comparada con Gliricidia (0,7 g kg-1 y -18,2‰). Los SSP redujeron la fertilidad del suelo independientemente de las especies arbóreas utilizadas como resultado de la reserva de nutrientes de la biomasa, sin fertilización de mantenimiento. Sabiá tuvo mayor deposición de FA-MOS, sin aumentar RBS, favoreciendo potencialmente la eficiencia del uso de C microbiano. La composición isotópica de C-CO2 enriquecida muestra una oxidación eficiente de la MOS en SSP con Gliricidia o Sabiá. Esta información puede contribuir a las evaluaciones relacionadas con el balance de CO2 y retención de C. Ambos SSP contribuyen al secuestro de C.Os Sistemas Silvipastoris (SSP) podem aumentar a produtividade e gerar renda. Também, SSP com leguminosas arbóreas adicionam nutrientes ao sistema, principalmente N, garantindo a saúde e qualidade do solo. Propriedades do solo foram avaliadas em dois SSP utilizando leguminosas arbóreas em consorcio com Urochloa decumbens Stapf. R. Webster (capim-braquiaria). Os tratamentos foram capim-braquiária + Mimosa caesalpiniifolia Benth (Sabiá) e capim-braquiária + Gliricidia sepium (Jacq.) Kunth ex Walp. (Gliricídia), sendo distribuídos em delineamento casualizado em blocos (três repetições). Coletas de solo foram realizadas nos anos 2013, 2017 e 2018, a 0, 4 e 8 m ao longo de transectos perpendiculares às fileiras duplas de árvores, nas profundidades de 0-20 e 20-40 cm. As propriedades químicas do solo avaliadas incluíram pH, P, K+, Ca2+, Mg2+, Al3+, H++Al3+, capacidade de troca de cátions (CTC) e saturação por bases. Foram analisadas a fração leve da matéria orgânica (FL-MOS), a respiração basal (RBS) e a abundância natural do 13C do CO2 respirado (δ13C-CO2). O pH (5,3; 5,2; 5,1), P (11,3; 7,2; 3,6 mg dm-3) e CTCefetiva (5,8; 5,1; 5,0 cmolc dm-3) diminuíram (P < 0,05) ao longo dos anos 2013, 2017 e 2018, respectivamente. No 2018, a FL-MOS e δ13C-CO2 foi maior em Sabiá (1,1 g kg-1 e -16,4‰) em comparação com Gliricídia (0,7 g kg-1 e -18,2‰). Os SSP reduziram a fertilidade do solo independentemente das espécies arbóreas utilizadas em decorrência do estoque de nutrientes da biomassa, sem adubação de manutenção. Sabiá teve maior deposição de FL-MOS, sem aumentar a RBS, proporcionando potencial para a eficiência do uso do C microbiano. A composição enriquecida de isótopos de C-CO2 mostra uma eficiente oxidação da MOS em SSP com Gliricídia ou Sabiá. Essas informações podem contribuir para as avaliações relacionadas ao balanço de CO2 e retenção de C. Ambos SSP contribuem para o sequestro de C

    Animal Performance and Pasture Characteristics of \u3cem\u3eBrachiaria decumbens\u3c/em\u3e Stapf., \u3cem\u3eGliricidia sepium\u3c/em\u3e (Jacq.) Steud, and \u3cem\u3eMimosa caesalpiniifolia\u3c/em\u3e Benth. in Silvipastoral Systems

    Get PDF
    Grasslands are the major source of feed for ruminants (Zanine 2005). Seasonality of production, however, is a constraint in forage-based systems. Silvopastoril systems combine different components (animals, trees, and forages) into one integrated system and may improve forage distribution across seasons. Resource use is usually more efficient both spatially and temporally, increasing land use efficiency (Nair 1993). Tree legumes present potential for silvopastoril systems because they can fix N from the atmosphere, improve cattle diet, and lead to a faster N cycle. In addition, trees provide shade and may reduce heat stress for grazing animals in warm-climate grasslands. Legume trees are commonly found in warm-season climates and present potential for use in silvopastoril systems. This research studied the animal performance and pasture characteristics of signal grass (Brachiaria decumbens Stapf.) in pure stand or in silvopastoril systems with Gliricidia sepium (Jacq.) Steud or Mimosa caesalpinifolia Benth

    Animal production in tropical pastures of Latin America

    Get PDF
    Animal production in Latin America based on tropical pastures contributes significantly to the Agricultural Gross Domestic Product (GDP). Edapho-climatic conditions and the land tenure system are among the determining factors of different types of animal production in various countries. Based on climatic characteristics, it is possible to divide Latin American tropical livestock production systems into those of dry areas, savannahs and humid areas. Dual-purpose animals account for the bulk of total livestock in tropical Latin America, with management in native pastures predominating. Measures to increase animal production in the region should include the use of more productive forage varieties adapted to different areas, appropriate pasture and herd management procedures and animal and plant genetic improvement, among others. Two of the main obstacles to greater livestock production are the degraded state of many pastures and the need to control the emission of greenhouse gases. In order to meet the increased demand for food, especially those of animal origin, efforts to increase production should prioritize the recovery of degraded pastures, greater use of integrated systems incorporating legumes and proper management practices, aimed at reducing the emission of greenhouse gase

    Contribuição de leguminosas arbóreas em sistemas silvipastoris com Brachiaria decumbens Stapf

    Get PDF
    Conhecer a contribuição de leguminosas em sistemas silvipastoris é essencial para promover maior eficiência dos serviços ambientais prestados por esses ecossistemas. Desse modo, objetivou-se avaliar a deposição, decomposição, contribuição de biomassa e composição química da gliricídia [Gliricidia sepium (Jacq.) Kunth ex Walp.] e sabiá (Mimosa caesalpiniifolia Benth) em pastagens consorciadas com braquiária (Brachiaria decumbens Stapf). Para quantificar a deposição da serrapilheira foram utilizadas molduras de 0,5 m2 locadas de 0,5 até 3,0 m do tronco das árvores, coletadas a cada 28 em 2012 e 2013. Na serrapilheira também foram determinados teor de N, percentual de nitrogênio da planta derivado do ar (% Ndda) pelo método da abundância natural, lignina e relação C:N, lignina:N. Na análise de decomposição foram realizados dois experimentos em áreas de exclusão, no primeiro foram incubadas folhas em sacos de nylon e no segundo, foram incubados ramos com três classes de circunferência, sendo retirados com 4, 8, 16, 32, 64, 128 e 256 dias, em 2011 e 2012. Foram determinados os teores de N, P, Ca, Mg, lignina e relação C:N, lignina:N. Para determinar a biomassa em 2012 e 2013 com intervalos de seis meses foram avaliadas: altura da leguminosa, stand, número de fustes, biomassa, nitrogênio total (N), % Ndda, lignina e relação C:N dos componentes (folhas e ramos em três classes de circunferências). A densidade e poder calorífico superior (PCs) também foram avaliados nos ramos. A deposição de serrapilheira anual da sabiá (4540 kg MO ha-1) foi 8% superior (P≤0,05) a gliricídia (4200 kg MO ha-1). A concentração de N da gliricídia foi (22,4 g kg-1) 20,4% superior a sabiá (P≤0,05) (18,6 g kg-1) proporcionando maior aporte anual de N (105 kg-1 ha-1) via serrapilheira de que a sabiá (87 kg-1 ha-1). A fixação biológica de N (FBN) não diferiu entre as espécies (P>0,05) com contribuição variando de 51 a 70% para gliricídia e 43 a 61%, para sabiá correspondendo a 64 e 46 kg ha-1 ano de N, respectivamente. A relação C:N da sabiá (23) foi superior (P≤0,05) a gliricídia (19:1). Os teores de lignina variaram de 17 a 30 % e a relação lignina:N de 5:1 a 21:1 durante os ciclos de avaliação, não diferindo (P>0,05) entre as espécies. Para folhas de gliricídia de decomposição foi mais rápida P 0.05) with Ndfa ranging from 51 to 70% for gliricidia and 43 to 61% for sabi, equivalent to 64 and 46 kg ha-1 yr-1 of N, respectively. Sabiá C:N ratio (23) was greater (P ≤ 0.05) than gliricidia (19). Lignin concentration ranged from 17 to 30% and lignin:N from 5:1 to 21:1 along the evaluation periods and did not differ (P > 0.05) between species. Gliricidia leaves decomposed faster (k = 0,0038 g.g-1.dia-1) than sabi leaves (k = 0,0012 g.g-1.dia-1), leading to faster nutrient released by gliricidia. Branches of gliricidia also decomposed faster (k = 0,0018 g.g-1.dia-1) than branches of sabi (k = 0,0005 g.g-1.dia-1). Leaves released 73 and 33% of its original N, leading to an annual input of 65 and 42 kg ha-1 N via leaf decomposition, for gliricidia and sabi, respectively. Remaining N was inversely correlated to branch circumference for gliricidia. Branch mineralization of N was 38% for gliricidia and 26% for sabi, with N contributions of 6 and 1 kg ha-1, respectively. Leaf P concentration was 3.1 g kg-1 at day zero, reducing to 1.5 g kg-1 at day 256. Leaf lignin content increased around 165.6 g kg-1 until 184 g kg-1 after 32 d and 210 g kg-1 after 64 d of incubation. Lignin was greater in sabi than in gliricidia, for the three branch circumference classes, reflecting better timber quality and longevity. Leaf Lig:N at time zero was greater for sabi (5:1) than gliricidia (4:1), reflecting the slower decomposition rate for sabi. Gliricidia stand (3070 trees ha-1) was greater than sabi stand (2840 trees ha-1), with plant mortality of 15 and 21% in regard to the initial stand (3600 seedlings ha-1). Branches with greater circumference (class 3) made the greatest contribution for total tree biomass, with 58 and 54% for gliricidia and sabi, respectively. Leaf represented the lowest contribution for total biomass, ranging from 7 to 13% for gliricidia and from 4 to 14% for sabi, and was the fraction with most variation among the months. Leaf and branch nutrient did not vary much along the cycles. Sabi presented greater annual litter deposition and greater litter C:N, reducing decomposition rate. Different decomposition patterns from leaves and branches showed the distinct ability of tree legume to recycle nutrients. The N input and the BNF of gliricidia and sabi represents an opportunity to add N to grassland ecosystems and the other added benefits that come from the tree legume.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPE

    Tree legumes: an underexploited resource in warm-climate silvopastures

    No full text
    Tree legumes are an underexploited resource in warm-climate silvopastures. Perceived benefits of tree legumes include provisioning (browse/mast, timber, fuel, human food, natural medicines, and ornamentals), regulating (C sequestration, greenhouse gas mitigation, soil erosion control and riparian buffers, shade, windbreaks, and habitat for pollinators), supporting (biological N2 -fixation, nutrient cycling, soil fertility and soil health, photosynthesis, and primary productivity), and cultural ecosystem services. Tree legumes, however, have not been assessed to the same extent as herbaceous legumes. Once tree legumes are established, they are often more persistent than most herbaceous legumes. There are limitations for extended research with tree legume silvopastures, but extensive research has been done in Africa and Australia and recent efforts have been reported in South America. Economic benefits must be demonstrated to land managers to increase adoption. These benefits are apparent in the research and successes already available, but more long-term research, including the livestock component is necessary. Other factors that reduce adoption include paucity of domesticated germplasm, lag in research/technology, challenges of multipurpose trees and management complexity, challenges to mechanization, dangers of invasive weeds, and social and cultural barriers. In the current scenario of climate change and the need to increase food security, tree legumes are a key component for the sustainable intensification of livestock systems in warm-climate regions

    Tree legumes: an underexploited resource in warm-climate silvopastures

    No full text
    ABSTRACT Tree legumes are an underexploited resource in warm-climate silvopastures. Perceived benefits of tree legumes include provisioning (browse/mast, timber, fuel, human food, natural medicines, and ornamentals), regulating (C sequestration, greenhouse gas mitigation, soil erosion control and riparian buffers, shade, windbreaks, and habitat for pollinators), supporting (biological N2-fixation, nutrient cycling, soil fertility and soil health, photosynthesis, and primary productivity), and cultural ecosystem services. Tree legumes, however, have not been assessed to the same extent as herbaceous legumes. Once tree legumes are established, they are often more persistent than most herbaceous legumes. There are limitations for extended research with tree legume silvopastures, but extensive research has been done in Africa and Australia and recent efforts have been reported in South America. Economic benefits must be demonstrated to land managers to increase adoption. These benefits are apparent in the research and successes already available, but more long-term research, including the livestock component is necessary. Other factors that reduce adoption include paucity of domesticated germplasm, lag in research/technology, challenges of multipurpose trees and management complexity, challenges to mechanization, dangers of invasive weeds, and social and cultural barriers. In the current scenario of climate change and the need to increase food security, tree legumes are a key component for the sustainable intensification of livestock systems in warm-climate regions

    Canopy structure and forage nutritive value of elephantgrass subjected to different stocking rate and N fertilization in the “Mata Seca” ecoregion of Pernambuco

    No full text
    ABSTRACT The objective was to evaluate the effect of three stocking rates (2, 3.9, and 5.8 animal units ha−1) and three fertilization levels (0, 150, and 300 kg N ha−1 yr−1) on herbage mass and nutritive value of elephantgrass (Pennisetum purpureum Schum.) cv. IRI-381. The experiment was conducted from May to August of 2009 and 2010 in Itambé, PE, Brazil, during the rainy season. Treatments were allocated in a split-plot arrangement in a completely randomized block design. The variables measured included leaf mass (pre- and post-grazing), botanical composition, soil cover, leaf area index, light interception, leaf angle, and concentrations of dry matter, organic matter, N, and in vitro digestible dry matter. When fertilized with 300 kg N ha−1 yr−1, leaf mass reached 18,560 kg ha−1. Leaf area index decreased with increasing stocking rate. The relationship between sward height and light interception was R2 = 0.0126. Increased stocking rate resulted in greater contribution of signalgrass [Brachiaria decumbens (Stapf.) R.D. Webster] in the botanical composition, with a contribution up to 29% in 2010. Elephantgrass nutritive value is directly affected by the fertilization levels and stocking rate, with highest nutrient concentrations observed with 2 AU ha−1 and 300 kg N ha−1 yr−1

    Genótipos de capim-elefante sob pastejo no período de seca na Zona da Mata de Pernambuco: fatores relacionados à eficiência de pastejo Elephantgrass genotypes under grazing during the dry period in the Forest Zone of Pernambuco: factors related to grazing efficiency

    No full text
    O experimento foi realizado com o objetivo de avaliar fatores relacionados à eficiência de pastejo de cinco genótipos de Pennisetum sp. (CE 08 A.D., Venezuela, HV-241, Elefante B e Hexaplóide) no período seco do ano na Zona da Mata de Pernambuco. Os genótipos foram manejados sob lotação rotacionada (44 dias de descanso e quatro dias de pastejo) ao longo de dois ciclos de pastejo. Adotou-se delineamento experimental em blocos ao acaso, com parcelas subdivididas (os genótipos representaram as parcelas e os ciclos de pastejo, as subparcelas) e quatro repetições. As massas de lâmina foliar total, verde e senescente pré-pastejo foram analisadas em seis repetições. O acúmulo e a eficiência de pastejo de lâmina foliar verde foram avaliados em delineamento em blocos casualizados, com quatro repetições. Os genótipos CE 08 A.D. e Elefante B apresentaram maiores massas de lâmina foliar total (1.374 kg de MS/ha) e verde pré-pastejo (737 kg de MS/ha) e maior acúmulo (654 kg de MS/ha/44 dias) e eficiência de pastejo de lâmina foliar verde (80%). No HV-241, a alta eficiência de pastejo (100% do acúmulo lâmina foliar verde) esteve associada ao baixo acúmulo de lâmina foliar verde (155 kg de MS/ha/44 dias). A menor eficiência de pastejo foi observada no Hexaplóide (59% do acúmulo de lâmina foliar verde), possivelmente em virtude das altas perdas sob pastejo (30% da massa de lâmina foliar total pré-pastejo). A massa de lâmina foliar verde diminuiu mais acentuadamente até o segundo dia de pastejo, enquanto as perdas de lâmina foliar total foram maiores no 2º e 3º dias de pastejo. Os genótipos CE 08 A.D. e Elefante B têm potencial para serem utilizados em sistemas de lotação rotacionada na Zona da Mata pernambucana.<br>The experiment was carried out to evaluate factors related to the grazing efficiency of five Pennisetum sp. genotypes (CE 08 A.D., Venezuela, HV-241, Elephant B and Hexaplóide) during the dry period in the Forest Zone of Pernambuco. Genotypes were managed under rotational stocking (44 days of resting and four days of grazing period). It was used a split-plot arrangement in a complete randomized block design (genotypes represented the plots; grazing cycles, the subplots). Six replications were used to determine pre-grazing total leaf blade mass and green and senescent leaf blade mass. Four replications were used for leaf blade accumulation and grazing efficiency and, for these variables, it was used a complete randomized blocks design. The CE 08 A.D. and Elephant B presented greater pre-graze total leaf blade mass, green leaf blade, green leaf blade accumulation, and grazing efficiency, with averages of 1,374 kg DM/ha, 737 kg DM/ha, 654 kg DM/ha/44 days and 80% of the green leaf blade accumulation, respectively. The highest grazing efficiency (100% of the green leaf blade accumulation) occurred at the HV-241 pastures. This high grazing efficiency was associated to the low green leaf blade accumulation (155 kg of MS/ha/44 days). The lowest grazing efficiency was observed for the Hexaplóide (59% of the green leaf blade accumulation), possibly due to high losses under grazing (30% of the pre-grazing total leaf blade mass). The green leaf blade mass decreased mostly until the second grazing day, while the losses of total leaf blade were higher in the second and third grazing days. The genotypes CE 08 A.D. and Elephant B presented potential to be used under rotational stocking, in the Pernambuco Forest Zone

    Tree legumes: an underexploited resource in warm-climate silvopastures

    No full text
    corecore