55 research outputs found

    Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand

    Get PDF
    In many malarious regions malaria transmission roughly coincides with rainy seasons, which provide for more abundant larval habitats. In addition to precipitation, other meteorological and environmental factors may also influence malaria transmission. These factors can be remotely sensed using earth observing environmental satellites and estimated with seasonal climate forecasts. The use of remote sensing usage as an early warning tool for malaria epidemics have been broadly studied in recent years, especially for Africa, where the majority of the world’s malaria occurs. Although the Greater Mekong Subregion (GMS), which includes Thailand and the surrounding countries, is an epicenter of multidrug resistant falciparum malaria, the meteorological and environmental factors affecting malaria transmissions in the GMS have not been examined in detail. In this study, the parasitological data used consisted of the monthly malaria epidemiology data at the provincial level compiled by the Thai Ministry of Public Health. Precipitation, temperature, relative humidity, and vegetation index obtained from both climate time series and satellite measurements were used as independent variables to model malaria. We used neural network methods, an artificial-intelligence technique, to model the dependency of malaria transmission on these variables. The average training accuracy of the neural network analysis for three provinces (Kanchanaburi, Mae Hong Son, and Tak) which are among the provinces most endemic for malaria, is 72.8% and the average testing accuracy is 62.9% based on the 1994-1999 data. A more complex neural network architecture resulted in higher training accuracy but also lower testing accuracy. Taking into account of the uncertainty regarding reported malaria cases, we divided the malaria cases into bands (classes) to compute training accuracy. Using the same neural network architecture on the 19 most endemic provinces for years 1994 to 2000, the mean training accuracy weighted by provincial malaria cases was 73%. Prediction of malaria cases for 2001 using neural networks trained for 1994-2000 gave a weighted accuracy of 53%. Because there was a significant decrease (31%) in the number of malaria cases in the 19 provinces from 2000 to 2001, the networks overestimated malaria transmissions. The decrease in transmission was not due to climatic or environmental changes. Thailand is a country with long borders. Migrant populations from the neighboring countries enlarge the human malaria reservoir because these populations have more limited access to health care. This issue also confounds the complexity of modeling malaria based on meteorological and environmental variables alone. In spite of the relatively low resolution of the data and the impact of migrant populations, we have uncovered a reasonably clear dependency of malaria on meteorological and environmental remote sensing variables. When other contextual determinants do not vary significantly, using neural network analysis along with remote sensing variables to predict malaria endemicity should be feasible

    Biology of Dengue Vectors and Their Control in Thailand

    Get PDF
    The vectors of dengue, dengue haemorrhagic fever, and dengue shock syndrome are Aedes aegypti in the urban and rural areas and Aedes albopictus in the rural area. Aedes albolateralis a species member in Aedes niveus subgroup is highly susceptible to dengue 2 virus in laboratory. This species breeds in the forest in bamboo stump and tree hole and may be a source of sylvatic transmission. The anthropophilic, diurnal and domestic habit of Aedes aegypti in the increasing population of the world sustain aegypti population. In South East Asia aegypti is now invading albopictus the original species. Some evidences in biology morphotaxonomy, biochemistry indicate the plasticity of the species. The control strategy mainly for Aedes aegypti are (a) emergency control to interrupt transmission (b) larvicide (c) environmental management. Integrated control would be emphasized. Primary health care aims at extending health services to all the population and participation of each section of the community is essential and under the supervision of vector control professional, making use of the extensive research on vectors and their control

    Didilia sp. Infecting Phlebotomus stantoni in Thailand

    Get PDF
    Nematode infection in wild caught Phlebotomine sand flies was investigated in Thailand. Light microscopy (LM) and scanning electron microscopy (SEM) were used to detect and morphologically characterize entomopathogenic nematodes that presented in the sand flies. Didilia sp. nematodes were found for the first time in the body cavity of wild caught male Phlebotomus stantoni sand flies. The Didilia sp. was identified based on the morphology of the adult nematodes, from their stylet and teeth at the anterior tip, body length, and egg shell sculpture. It was noted that every infected male sand fly had unrotated genitalia, which would not allow them to mate, thus leading to the loss of their offspring. This finding provided information that might lead to study on whether or not the Didilia sp. has the potential to control sand fly population

    Species composition and population dynamics of phlebotomine sand flies in a Leishmania infected area of Chiang Mai, Thailand

    Get PDF
    Phlebotomine sand flies are established vectors of leishmaniasis in humans. In Thailand, Leishmania martiniquensis and “Leishmania siamensis” have been described as causative agents of leishmaniasis. In this study, a survey of sand flies in the Leishmania infected area of Hang Dong district, Chiang Mai, Thailand was performed using CDC light traps for eight consecutive months, from January to August 2016. A total of 661 sand flies were collected, and of 280 female sand flies, four species of the genus Sergentomyia including Sergentomyia gemmea, S. barraudi, S. indica, and S. hivernus and one species of the genus Phlebotomus, Phlebotomus stantoni, were identified. S. gemmea and S. hivernus were found in Chiang Mai for the first time. The density of captured female sand flies was high in warm and humid periods from June to August, with temperatures of around 26°C and relative humidity about 74%. In addition, S. gemmea was the most predominant species in the area. Further studies as to whether or not these sand fly species could be a vector of Leishmaniasis in Thailand are required

    Variation in Number and Formation of Repeat Sequences in the rDNA ITS2 Region of Five Sibling Species in the Anopheles barbirostris Complex in Thailand

    Get PDF
    Repeat sequences of approximately 100 base pairs in length were found in the rDNA ITS2 region of Anopheles barbirostris van der Wulp (Diptera: Culicidae) species A1, A2, A3, A4, and An. campestris-like in the An. barbirostris complex. Variation in the number of repeats was observed among the five sibling species. Specifically, 10 repeats were observed in A1, eight in A2, A4, and campestris-like, and three in A3. Based on similarities in the sequences of the repeats, related repeats were classified into nine groups. Although A2, A4, and the campestris-like species had the same number of repeats, the ITS2 region of the three species contained different groups of repeats. Excluding the repeat sequences facilitated good alignment of the ITS2 region in the five sibling species. Phylogenetic analyses of the 95 isolines were compared with results obtained from mitochondrial genes (COI and COII). The results revealed marked differences among the five sibling species, particularly regarding the ITS2 region of A3, which was more distinct from the other four species than COI and COIL Repeat sequences in the ITS2 region of other Anopheles species retrieved from GenBank also were analyzed. New repeat sequences were found in An. beklemishevi Stegnii and Kabanova, An. crucians Wiedemann and An. funestus Giles, suggesting that the occurrence of repeat sequences in the ITS2 region are not rare in anopheline mosquitoes

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p

    List of mosquito species in Southeast Asia

    No full text

    Studies on Brugian filariasis and its vectors in southern Thailand

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore