40 research outputs found

    Cultural consensus and intracultural diversity in ethnotaxonomy: lessons from a fishing community in Northeast Brazil

    Get PDF
    Background: Traditional fishing communities are strongholds of ethnobiological knowledge but establishing to what degree they harbor cultural consensus about different aspects of this knowledge has been a challenge in many ethnobiological studies. Methods: We conducted an ethnobiological study in an artisanal fishing community in northeast Brazil, where we interviewed 91 community members (49 men and 42 women) with different type of activities (fishers and non-fishers), in order to obtain free lists and salience indices of the fish they know. To establish whether there is cultural consensus in their traditional knowledge on fish, we engaged a smaller subset of 45 participants in triad tasks where they chose the most different fish out of 30 triads. We used the similarity matrices generated from the task results to detect if there is cultural consensus in the way fish were classified by them. Results: The findings show how large is the community’s knowledge of fish, with 197 ethnospecies registered, of which 33 species were detected as salient or important to the community. In general, men cited more fish than women. We also found that there was no cultural consensus in the ways fish were classified. Conclusions: Both free-listing and triad task methods revealed little cultural consensus in the way knowledge is structured and how fish were classified by community members. Our results suggest that it is prudent not to make assumptions that a given local community has a single cultural consensus model in classifying the organisms in their environment

    Rainforest trees respond to drought by modifying their hydraulic architecture

    Get PDF
    Increased drought is forecasted for tropical regions, with severe implications for the health and function of forest ecosystems. How mature forest trees will respond to water deficit is poorly known. We investigated wood anatomy and leaf traits in lowland tropical forest trees after 24 months of experimental rainfall exclusion. Sampling sun‐exposed young canopy branches from target species, we found species‐specific systematic variation in hydraulic‐related wood anatomy and leaf traits in response to drought stress. Relative to controls, drought‐affected individuals of different tree species variously exhibited trait measures consistent with increasing hydraulic safety. These included narrower or less vessels, reduced vessel groupings, lower theoretical water conductivities, less water storage tissue and more abundant fiber in their wood, and more occluded vessels. Drought‐affected individuals also had lower leaf to twig dry mass ratios, thinner leaves, and more negative pre‐dawn or mid‐day leaf water potentials. Future studies examining both wood and leaf hydraulic traits should improve the representation of plant hydraulics within terrestrial ecosystem and biosphere models, and help fine‐tune predictions of how future climate changes will affect tropical forests globally

    Vegetation and floristics of a lowland tropical rainforest in northeast Australia

    Get PDF
    Background: Full floristic data, tree demography, and biomass estimates incorporating non-tree life forms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≄ 10 cm diameter at breast height (dbh) in a new 1- ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller size shrubs and treelets subsampled from nine 20 m quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≄ 10 cm dbh. We estimate a stem basal area of 34.9 m ha, of which small stems (tree saplings and shrubs <10cm dbh) and lianas collectively contribute c.4.2%. Comparing the stem density-diversity patterns of the DRO forest with other tropical rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. New information: We present a floristic checklist, a life form breakdown, and demography data from two 1-ha rainforest plots from a lowland tropical rainforest study site. We also present a meta-analysis of stem densities and species diversity from comparable-sized plots across the tropics

    Tropical wet and dry forest tree species exhibit contrasting hydraulic architecture

    No full text
    Forest tree species in wet and dry habitats are generally considered functionally divergent in leaf and stem functional traits such as leaf area, leaf mass per area, wood density and tree height. Yet, these traits have limited utility for characterizing plant water transport adaptations and strategies. We tested the hypothesis that wet and dry forest trees are functionally divergent in their water conducting apparatus. To assess trait differences and adaptations, we sampled branch wood from nine same-genus species-pairs, each species-pair occurring respectively in the wet (>1500 mm annual rainfall) and dry forest (<800 mm annual rainfall) in tropical Queensland, Australia. From branch wood sections, we measured anatomical traits involved in water conduction (stem vessel dimensions, fractions and their spatial distributions, theoretical water conductivities), storage (parenchyma), and providing hydraulic safety functions (fibres fractions, vulnerability index). Relative to wet forest species, we found on overall that dry forest trees had trait combinations showing adaptations to aridity such as more storage tissue and greater vessel connectivity which may provide alternative pathways for water transport should vessel embolism occur. Habitat is an environmental filter that influences trait behaviour across related species. However, depending on the genera, species in both dry and wet forest habitats also exhibit various tradeoffs in trait values, highlighting the existence of diverse hydraulic strategies within wet forest and dry forest trees

    Cultural consensus and intracultural diversity in ethnotaxonomy : lessons from a fishing community in Northeast Brazil

    No full text
    Background: Traditional fishing communities are strongholds of ethnobiological knowledge but establishing to what degree they harbor cultural consensus about different aspects of this knowledge has been a challenge in many ethnobiological studies. Methods: We conducted an ethnobiological study in an artisanal fishing community in northeast Brazil, where we interviewed 91 community members (49 men and 42 women) with different type of activities (fishers and non-fishers), in order to obtain free lists and salience indices of the fish they know. To establish whether there is cultural consensus in their traditional knowledge on fish, we engaged a smaller subset of 45 participants in triad tasks where they chose the most different fish out of 30 triads. We used the similarity matrices generated from the task results to detect if there is cultural consensus in the way fish were classified by them. Results: The findings show how large is the community’s knowledge of fish, with 197 ethnospecies registered, of which 33 species were detected as salient or important to the community. In general, men cited more fish than women. We also found that there was no cultural consensus in the ways fish were classified. Conclusions: Both free-listing and triad task methods revealed little cultural consensus in the way knowledge is structured and how fish were classified by community members. Our results suggest that it is prudent not to make assumptions that a given local community has a single cultural consensus model in classifying the organisms in their environment

    Post-fire plant regeneration across a closed forest-savanna vegetation transition

    No full text
    Fire is a major environmental factor influencing vegetation heterogeneity, with closed forest and savanna ecosystems having different management needs due to their different responses to fire disturbance. However, the differences in post-fire vegetation dynamics between these ecosystems have seldom been compared using a uniform set of parameters. Additionally, post-fire dynamics of forest-savanna ecotones is poorly characterized. With the hypothesis that closed forest, savannas and ecotones will exhibit different post-fire responses, we studied the vegetation diversity, structure and dynamics in an upland forest savanna vegetation mosaic in Minas Gerais, Brazil following a fire that occurred in September 2011. In January 2012, we identified, tagged, and measured the basal diameter of all regenerating juvenile tree stems within forty-six 4 m(2) plots in closed forest, savanna and ecotone vegetation, and conducted recensuses in 2013 and 2014. We modelled the relationship between short-term dynamics parameters (recruitment, mortality, basal area loss and gain, and the turnover and net changes in the number of individual stems and basal areas) and vegetation type. Species diversity was higher in closed forests and ecotones than in savanna. Across all vegetation types, stem density decreased and basal area increased. Parameters such as recruitment, net changes in the number of individuals, and the gain, loss and turnover in basal area did not differ across vegetation types. However, stem mortality was higher in closed forest and ecotones combined than in savannas, and the net change in the number of individuals was the lowest in the savanna. Overall, our results support that within a climatically-similar vegetation mosaic, closed forests exhibit different post-fire regeneration dynamics from savanna as expected. Ecotones exhibited post-fire responses and dynamics more similar to closed forests than to savanna, but more studies will be needed to establish if this pattern is applicable to other areas. Understanding the longer-term vegetation dynamics and plant regeneration patterns is a potential next step that will help inform fire management strategies for forest-savanna mosaics
    corecore