8 research outputs found

    The role of glucose in oxidative phosphorylation dysfunctional myoblasts

    No full text

    The role of glucose in oxidative phosphorylation dysfunctional myoblasts

    Get PDF
    Contains fulltext : 157073.pdf (publisher's version ) (Open Access)RU Radboud Universiteit, 26 mei 2016Promotores : Smeitink, J.A.M., Brock, R.E. Co-promotores : Koopman, W.J.H., Willems, P.H.G.M.184 p

    Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism

    No full text
    Contains fulltext : 153196.pdf (Publisher’s version ) (Open Access)Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans

    Mitoenergetic Dysfunction Triggers a Rapid Compensatory Increase in Steady-State Glucose Flux

    No full text
    Contains fulltext : 152488.pdf (publisher's version ) (Closed access)ATP can be produced in the cytosol by glycolytic conversion of glucose (GLC) into pyruvate. The latter can be metabolized into lactate, which is released by the cell, or taken up by mitochondria to fuel ATP production by the tricarboxylic acid cycle and oxidative phosphorylation (OXPHOS) system. Altering the balance between glycolytic and mitochondrial ATP generation is crucial for cell survival during mitoenergetic dysfunction, which is observed in a large variety of human disorders including cancer. To gain insight into the kinetic properties of this adaptive mechanism we determined here how acute (30 min) inhibition of OXPHOS affected cytosolic GLC homeostasis. GLC dynamics were analyzed in single living C2C12 myoblasts expressing the fluorescent biosensor FLII(12)Pglu-700mudelta6 (FLII). Following in situ FLII calibration, the kinetic properties of GLC uptake (V1) and GLC consumption (V2) were determined independently and used to construct a minimal mathematical model of cytosolic GLC dynamics. After validating the model, it was applied to quantitatively predict V1 and V2 at steady-state (i.e., when V1 = V2 = Vsteady-state) in the absence and presence of OXPHOS inhibitors. Integrating model predictions with experimental data on lactate production, cell volume, and O2 consumption revealed that glycolysis and mitochondria equally contribute to cellular ATP production in control myoblasts. Inhibition of OXPHOS induced a twofold increase in Vsteady-state and glycolytic ATP production flux. Both in the absence and presence of OXPHOS inhibitors, GLC was consumed at near maximal rates, meaning that GLC consumption is rate-limiting under steady-state conditions. Taken together, we demonstrate here that OXPHOS inhibition increases steady-state GLC uptake and consumption in C2C12 myoblasts. This activation fully compensates for the reduction in mitochondrial ATP production, thereby maintaining the balance between cellular ATP supply and demand

    Acute stimulation of glucose influx upon mitoenergetic dysfunction requires LKB1, AMPK, Sirt2 and mTOR-RAPTOR

    Get PDF
    Mitochondria play a central role in cellular energy production, and their dysfunction can trigger a compensatory increase in glycolytic flux to sustain cellular ATP levels. Here, we studied the mechanism of this homeostatic phenomenon in C2C12 myoblasts. Acute (30 min) mitoenergetic dysfunction induced by the mitochondrial inhibitors piericidin A and antimycin A stimulated Glut1-mediated glucose uptake without altering Glut1 (also known as SLC2A1) mRNA or plasma membrane levels. The serine/threonine liver kinase B1 (LKB1; also known as STK11) and AMP-activated protein kinase (AMPK) played a central role in this stimulation. In contrast, ataxia-telangiectasia mutated (ATM; a potential AMPK kinase) and hydroethidium (HEt)-oxidizing reactive oxygen species (ROS; increased in piericidin-A- and antimycin-A-treated cells) appeared not to be involved in the stimulation of glucose uptake. Treatment with mitochondrial inhibitors increased NAD+ and NADH levels (associated with a lower NAD+:NADH ratio) but did not affect the level of Glut1 acetylation. Stimulation of glucose uptake was greatly reduced by chemical inhibition of Sirt2 or mTOR-RAPTOR. We propose that mitochondrial dysfunction triggers LKB1-mediated AMPK activation, which stimulates Sirt2 phosphorylation, leading to activation of mTOR-RAPTOR and Glut1-mediated glucose uptake

    Quantitative glucose and ATP sensing in mammalian cells

    No full text
    Contains fulltext : 98278.pdf (publisher's version ) (Closed access)The functioning and survival of mammalian cells requires an active energy metabolism. Metabolic dysfunction plays an important role in many human diseases, including diabetes, cancer, inherited mitochondrial disorders, and metabolic syndrome. The monosaccharide glucose constitutes a key source of cellular energy. Following its import across the plasma membrane, glucose is converted into pyruvate by the glycolysis pathway. Pyruvate oxidation supplies substrates for the ATP-generating mitochondrial oxidative phosphorylation (OXPHOS) system. To gain cell-biochemical knowledge about the operation and regulation of the cellular energy metabolism in the healthy and diseased state, quantitative knowledge is required about (changes in) metabolite concentrations under (non) steady-state conditions. This information can, for instance, be used to construct more realistic in silico models of cell metabolism, which facilitates understanding the consequences of metabolic dysfunction as well as on- and off-target effects of mitochondrial drugs. Here we review the current state-of-the-art live-cell quantification of two key cellular metabolites, glucose and ATP, using protein-based sensors. The latter apply the principle of FRET (fluorescence resonance energy transfer) and allow measurements in different cell compartments by fluorescence microscopy. We further summarize the properties and applications of the FRET-based sensors, their calibration, pitfalls, and future perspectives

    Front Matter and Introductory Essay: Issues in Boys' Education

    No full text
    The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI-CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (DeltapH) and electrical charge (Deltapsi) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Deltapsi depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24h) CI inhibition in HEK293 cells induces a proton-based Deltapsi hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and prevented by co-inhibition of CII, CIII or CIV activity. In contrast, chronic CIII inhibition triggered CV reverse-mode action and induced Deltapsi depolarization. CI- and CIII-inhibition similarly reduced free matrix ATP levels and increased the cell's dependence on extracellular glucose to maintain cytosolic free ATP. Our findings support a model in which Deltapsi hyperpolarization in CI-inhibited cells results from low activity of CII, CIII and CIV, combined with reduced forward action of CV and ANT
    corecore