115 research outputs found

    On the ongoing multiple blowout in NGC 604

    Get PDF
    Several facts regarding the structure of NGC 604 are examined here. The three main cavities, produced by the mechanical energy from massive stars which in NGC 604 are spread over a volume of 106^6 pc3^3, are shown here to be undergoing blowout into the halo of M33. High resolution long slit spectroscopy is used to track the impact from massive stars while HST archive data is used to display the asymmetry of the nebula. NGC 604 is found to be a collection of photoionized filaments and sections of shells in direct contact with the thermalized matter ejected by massive stars. The multiple blowout events presently drain the energy injected by massive stars and thus the densest photoionized gas is found almost at rest and is expected to suffer a slow evolution.Comment: 15 pages (11 text), 4 figures. To be published in Ap

    Young Super Star Clusters in the Starburst of M82: The Catalogue

    Full text link
    Recent results from Hubble Space Telescope (HST) have resolved starbursts as collections of compact young stellar clusters. Here we present a photometric catalogue of the young stellar clusters in the nuclear starburst of M82, observed with the HST WFPC2 in Halpha (F656N) and in four optical broad-band filters. We identify 197 young super stellar clusters. The compactness and high density of the sources led us to develop specific techniques to measure their sizes. Strong extinction lanes divide the starburst into five different zones and we provide a catalogue of young super star clusters for each of these. In the catalogue we include relative coordinates, radii, fluxes, luminosities, masses, equivalent widths, extinctions, and other parameters. Extinction values have been derived from the broad-band images. The radii range between 3 and 9 pc, with a mean value of 5.7 +/- 1.4pc, and a stellar mass between 10e4 and 10e6 Mo. The inferred masses and mean separation, comparable to the size of super star clusters, together with their high volume density, provides strong evidence for the key ingredients postulated by Tenorio et al. (2003) as required for the development of a supergalactic wind.Comment: 45 pages, 5 figures, 12 tables. Accepted for publication in ApJ. Added Erratu

    FIELD TRIP TO THE YPRESIAN/LUTETIAN BOUNDARY AT THE GORRONDATXE BEACH SECTION (BASQUE COUNTRY, W PYRENEES)

    Get PDF
    One of the Paleogene Stage boundaries still needing official definition is the Ypresian/Lutetain (Early- Middle Eocene) boundary. With the aim of contributing to attain this definition, a high-resolution multidisciplinary study, including physical stratigraphy (lithostratigraphy, sequence stratigraphy and magnetostratigraphy) and biostratigraphy (calcareous nannofossil, planktic foraminifer and larger foraminifer), has been carried out over the 700 m thick uppermost Ypresian – lower Lutetian Gorrondatxe section. The results show that the different events traditionally used to place the Ypresian/Lutetian boundary, hitherto thought to be simultaneous (i.e., the planktic foraminifer P9 (=E7) / P10 (=E8) Zone boundary; the calcareous nannofossil CP12a / CP12b Subzone boundary; the larger foraminifer SBZ12 / SBZ13 Zone boundary; and the boundary between magnetic polarity chrons C22n and C21r), actually occur at very different levels. Therefore, before considering any section to place the Ypresian/Lutetian boundary stratotype, the criterion to precisely define this boundary should be selected. To this end, the succession of events pinpointed in the Ypresian/Lutetian boundary interval of the Gorrondatxe beach section might prove a useful database. The Gorrondatxe section fulfils most of the requirements demanded of a prospective stratotype section. In addition, the great sedimentary thickness, which implies a very high deep-marine sedimentation rate, provides the Gorrondatxe section an additional value, as it offers the opportunity to chronologically order successive biomagnetostratigraphic events more precisely than elsewhere. Therefore, we consider that, once the criterion to define the Ypresian/Lutetian boundary is selected, the Gorrondatxe beach section should be deemed a firm candidate to place the Global Stratotype Section and Point of the base of the Lutetian Stage

    Cyclostratigraphy of the Early/Middle Eocene transition: a Pyrenean perspective

    Get PDF
    An integrated bio-, magneto- and cyclostratigraphic study of the Ypresian/Lutetian (Early/Middle Eocene) transition along the Pyrenean Otsakar section (Payros et al., 2011) resulted in the identification of the C22n/C21r chron boundary and of the calcareous nannofossil CP12a/b zonal boundary; the latter is the main correlation criterion of the Lutetian Global Stratotype Section and Point (GSSP) recently defined at Gorrondatxe (Basque Country). By counting precession-related mudstone-marl couplets of 21 ka, the time lapse between both events was calculated to be of 819 ka. This suggests that the age of the CP12a/b boundary, and hence that of the Early/Middle Eocene boundary, is 47.76 Ma, 250 ka younger than previously thought. This age agrees with, and is supported by, estimates from Gorrondatxe based on the time lapse between the Lutetian GSSP and the C21r/C21n boundary. The duration of Chron C21r is estimated at 1.326 Ma. Given that the base of the Eocene is dated at 55.8 Ma, the duration of the Early Eocene is of 8 Ma, 0.8 Ma longer than in current time scales. The Otsakar results further show that the bases of planktic foraminiferal zones E8 and P10 are younger than the CP12a/b boundary. The first occurrence of Turborotalia frontosa, being approximately 550 ka older that the CP12a/b boundary, is the planktic foraminiferal event that lies closest to the Early/Middle Eocene boundary. The larger foraminiferal SBZ12/13 boundary is located close to the CP12a/b boundary and correlates with Chron C21r, not with the C22n/C21r boundary

    The Interaction between the ISM and Star Formation in the Dwarf Starburst Galaxy NGC 4214

    Get PDF
    We present the first interferometric study of the molecular gas in the metal-poor dwarf starburst galaxy NGC 4214. Our map of the 12CO(1-0) emission, obtained at the OVRO millimeter array, reveals an unexpected structural wealth. We detected three regions of molecular emission in the north-west (NW), south-east (SE) and centre of NGC 4214 which are in very different and distinct evolutionary stages (total molecular mass: 5.1 x 10^6 M_sun). These differences are apparent most dramatically when the CO morphologies are compared to optical ground based and HST imaging: massive star formation has not started yet in the NW region; the well-known starburst in the centre is the most evolved and star formation in the SE complex started more recently. We derive a star formation efficiency of 8% for the SE complex. Using high--resolution VLA observations of neutral hydrogen HI and our CO data we generated a total gas column density map for NGC 4214 (HI + H_2). No clear correlation is seen between the peaks of HI, CO and the sites of ongoing star formation. This emphasizes the irregular nature of dwarf galaxies. The HI and CO velocities agree well, so do the H-alpha velocities. In total, we cataloged 14 molecular clumps in NGC 4214. Our results from a virial mass analysis are compatible with a Galactic CO-to-H_2 conversion factor for NGC 4214 (lower than what is usually found in metal-poor dwarf galaxies).Comment: accepted for publication in the AJ (February 2001), full ps file at: ftp://ftp.astro.caltech.edu/users/fw/ngc4214/walter_prep.p

    Metal enrichment in near-IR luminous galaxies at z~2: signatures of proto-ellipticals?

    Full text link
    We present the analysis of the coadded rest-frame UV spectrum (1200<z<2000 A) of five K-luminous galaxies at z~2 from the K20 survey. The composite spectrum is characterized by strong absorption lines over the UV continuum from C, N, O, Al, Si, and Fe in various ionization stages. While some of these lines are interstellar, several among the strongest absorptions are identified with stellar photospheric lines. Most of the photospheric and interstellar features are stronger in the K-luminous composite spectrum than in LBGs at z~3. This suggests higher metallicity and possibly also larger interstellar velocity dispersion caused by macroscopic motions. The absorption lines and the slope of the UV continuum is well matched by the spectrum of the nearby luminous infrared galaxy NGC 6090, which is in the process of merging. A metallicity higher than solar is suggested by comparing the pure photospheric lines (SiIII, CIII, FeV) with starburst models. The evidence of high metallicity, together with the high masses, high star-formation rates, and possibly strong clustering, well qualify these galaxies as progenitors of local massive ellipticals.Comment: 4 pages, 3 figures, Accepted ApJ Letter

    A Galactic O-Star Catalog

    Full text link
    We have produced a catalog of 378 Galactic O stars with accurate spectral classifications which is complete for V<8 but includes many fainter stars. The catalog provides cross-identifications with other sources; coordinates (obtained in most cases from Tycho-2 data); astrometric distances for 24 of the nearest stars; optical (Tycho-2, Johnson, and Stromgren) and NIR photometry; group membership, runaway character, and multiplicity information; and a web-based version with links to online services.Comment: 76 pages, 13 tables, and 3 figures. Accepted for publication in Astrophysical Journal. Online version of the catalog available at http://www.stsci.edu/~jmaiz/GOSmain.htm

    Nuclear activity and massive star formation in the low luminosity AGN NGC4303: Chandra X-ray observations

    Full text link
    We present evidence of the co-existence of either an AGN or an ultraluminous X-ray source (ULX), together with a young super stellar cluster in the 3 central parsecs of NGC4303. The galaxy contains a low luminosity AGN and hosts a number of starburst regions in a circumnuclear spiral, as well as in the nucleus itself. A high spatial resolution Chandra image of this source reveals that the soft X-ray emission traces the ultraviolet nuclear spiral down to a core, which is unresolved both in soft and hard X-rays. The astrometry of the X-ray core coincides with the UV core within the Chandra positioning accuracy. The total X-ray luminosity of the core, 1.5*10^{39} erg/s, is similar to that from some LINERs or from the weakest Seyferts detected so far. The soft X-rays in both the core and the extended structure surrounding it can be well reproduced by evolutionary synthesis models (which include the emission expected from single stars, the hot diffuse gas, supernova remnants and binary systems), consistent with the properties of the young stellar clusters identified in the UV. The hard X-ray tail detected in the core spectrum, however, most likely requires the presence of an additional source. This additional source could either be a weak active nucleus black hole or an ultraluminous X-ray object. The implications of these results are discussed.Comment: 37 pages, 7 figures, ApJ accepte

    New Wolf-Rayet Galaxies with Detection of WC Stars

    Get PDF
    We report the discovery of two new Wolf-Rayet (WR) galaxies: Mrk~1039, and F08208++2816. Two broad WR bumps at 5808\AA~ and 4650\AA~ indicate the presence of WCE and WNL star population in all two sources. We also confirm the presenceof WR features in Mrk~35, previously detected in a different position. The observed equivalent width of the WR bump at 4650\AA~ and the derived number ratios of WR/(WR++O) imply that star formation in these sources takes place inshort burst duration. Comparisons with the recent models of WR populations in young starbursts with the observed EW(\HeII)/EW(\CIV)/EW(WRbump) and their relative intensitie provide an indication that the stellar initial mass function in some WR galaxies might not be Salpeter-like. It is interesting to find that the luminous IRAS source, F08208++2816, has little dust reddening, probably because of the existence of a powerful superwind. By comparisons with other starbursts observed with the Hopkins Ultraviolet Telescope, F08208++2816 as a merging system renders a chance to study the contribution from young starbursts to the UV background radiation in universe.Comment: 22 pages, 6 figures, 4 tables, accepted by The Astrophysical Journa
    • 

    corecore