172 research outputs found

    Bulk Electronic Structure of Ni2MnGa studied by Density Functional Theory and Hard X-ray Photoelectron Spectroscopy

    Full text link
    A combined study employing density functional theory (DFT) using the experimentally determined modulated structures and bulk-sensitive hard x-ray photoelectron spectroscopy on single-crystalline Ni2_2MnGa is presented in this work. For the aforementioned modulated structures, all of the characteristic features in the experimental valence band (VB) are in excellent agreement with the theoretical VB calculated from DFT, evincing that it is the true representation of Ni2_2MnGa in the martensite phase. We establish the existence of a charge density wave (CDW) state in the martensite phase from the shape of the VB near EFE_F that shows a transfer of spectral weight in excellent agreement with DFT. Furthermore, presence of a pseudogap is established by fitting the near EFE_F region with a power law function predicted theoretically for the CDW phase. Thus, the present work emphasizes that the atomic modulation plays an important role in hosting the CDW phase in bulk stoichiometric Ni2_2MnGa.Comment: *Equal contributio

    Comparing Observed Stellar Kinematics and Surface Densities in a Low-latitude Bulge Field to Galactic Population Synthesis Models

    Get PDF
    We present an analysis of Galactic bulge stars from Hubble Space Telescope Wide Field Camera 3 observations of the Stanek window (l, b = [0.25,-2.15]) from two epochs approximately two years apart. This data set is adjacent to the provisional Wide-field Infrared Survey Telescope (WFIRST) microlensing field. Proper motions are measured for approximately 115,000 stars down to 28th mag in V band and 25th mag in I band, with accuracies of 0.5 mas yr-1 (20 km s-1) at I ≈ 21. A cut on the longitudinal proper motion μ l allows us to separate disk and bulge populations and produce bulge-only star counts that are corrected for photometric completeness and efficiency of the proper-motion cut. The kinematic dispersions and surface density in the field are compared to the nearby SWEEPS sight line, finding a marginally larger-than-expected gradient in stellar density. The observed bulge star counts and kinematics are further compared to the Besançon, Galaxia, and GalMod Galactic population synthesis models. We find that most of the models underpredict low-mass bulge stars by ∼33% below the main-sequence turnoff, and upwards of ∼70% at redder J and H wavebands. While considering inaccuracies in the Galactic models, we give implications for the exoplanet yield from the WFIRST microlensing mission

    Theoretical prediction and experimental study of a ferromagnetic shape memory alloy: Ga_2MnNi

    Get PDF
    We predict the existence of a new ferromagnetic shape memory alloy Ga_2MnNi using density functional theory. The martensitic start temperature (T_M) is found to be approximately proportional to the stabilization energy of the martensitic phase (deltaE_tot) for different shape memory alloys. Experimental studies performed to verify the theoretical results show that Ga_2MnNi is ferromagnetic at room temperature and the T_M and T_C are 780K and 330K, respectively. Both from theory and experiment, the martensitic transition is found to be volume conserving that is indicative of shape memory behavior.Comment: 11 pages, 3 figure

    Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants

    Full text link
    We compare the planet-to-star mass-ratio distribution measured by gravitational microlensing to core accretion theory predictions from population synthesis models. The core accretion theory's runaway gas accretion process predicts a dearth of intermediate-mass giant planets that is not seen in the microlensing results. In particular, the models predict ∼10 ×\sim10\,\times fewer planets at mass ratios of 10−4≤q≤4×10−410^{-4} \leq q \leq 4 \times 10^{-4} than inferred from microlensing observations. This tension implies that gas giant formation may involve processes that have hitherto been overlooked by existing core accretion models or that the planet-forming environment varies considerably as a function of host-star mass. Variation from the usual assumptions for the protoplanetary disk viscosity and thickness could reduce this discrepancy, but such changes might conflict with microlensing results at larger or smaller mass ratios, or with other observations. The resolution of this discrepancy may have important implications for planetary habitability because it has been suggested that the runaway gas accretion process may have triggered the delivery of water to our inner solar system. So, an understanding of giant planet formation may help us to determine the occurrence rate of habitable planets.Comment: 12 pages, 2 figures, 1 table, accepted for publication in ApJ

    Measurement of the Free-Floating Planet Mass Function with Simultaneous Euclid and WFIRST Microlensing Parallax Observations

    Get PDF
    Free-floating planets are the remnants of violent dynamical rearrangements of planetary systems. It is possible that even our own solar system ejected a large planet early in its evolution. WFIRST will have the ability to detect free-floating planets over a wide range of masses, but it will not be able to directly measure their masses. Microlensing parallax observations can be used to measure the masses of isolated objects, including free-floating planets, by observing their microlensing events from two locations. The intra-L2 separation between WFIRST and Euclid is large enough to enable microlensing parallax measurements, especially given the exquisite photometric precision that both spacecraft are capable of over wide fields. In this white paper we describe how a modest investment of observing time could yield hundreds of parallax measurements for WFIRST's bound and free-floating planets. We also describe how a short observing campaign of precursor observations by Euclid can improve WFIRST's bound planet and host star mass measurements.Comment: Astro2020 White Pape

    Confirmation of Color Dependent Centroid Shift Measured After 1.8 years with HST

    Full text link
    We measured precise masses of the host and planet in OGLE-2003-BLG-235 system, when the lens and source were resolving, with 2018 Keck high resolution images. This measurement is in agreement with the observation taken in 2005 with the Hubble Space Telescope (HST). In 2005 data, the lens and sources were not resolved and the measurement was made using color-dependent centroid shift only. Nancy Grace Roman Space Telescope will measure masses using data typically taken within 3-4 years of the peak of the event which is much shorter baseline compared to most of the mass measurements to date. Hence, color dependent centroid shift will be one of the primary method of mass measurements for Roman. Yet, mass measurements of only two events (OGLE-2003-BLG-235 and OGLE-2005-BLG-071) are done using the color dependent centroid shift method so far. The accuracy of the measurements using this method are neither completely known nor well studied. The agreement of Keck and HST results, shown in this paper, is very important since this agreement confirms the accuracy of the mass measurements determined at a small lens-source separation using the color dependent centroid shift method. This also shows that with >100 high resolution images, Roman telescope will be able to use color dependent centroid shift at 3-4 years time baseline and produce mass measurements. We find that OGLE-2003-BLG-235 is a planetary system consists of a 2.34 +- 0.43M_Jup planet orbiting a 0.56 +- 0.06M_Sun K-dwarf host star at a distance of 5.26 +- 0.71 kpc from the Sun.Comment: Submitted to AJ, under review. arXiv admin note: substantial text overlap with arXiv:2009.0232

    Keck Observations Confirm a Super-Jupiter Planet Orbiting M Dwarf OGLE-2005-BLG-071L

    Get PDF
    We present adaptive optics imaging from the NIRC2 instrument on the Keck II telescope that resolves the exoplanet host (and lens) star as it separates from the brighter source star. These observations yield the K-band brightness of the lens and planetary host star, as well as the lens-source relative proper motion, µ_(rel,H), in the heliocentric reference frame. The µ_(rel,H) measurement allows for the determination of the microlensing parallax vector, π_E, which had only a single component determined by the microlensing light curve. The combined measurements of µ_(rel,H) and K L provide the masses of the host star, M_(host) = 0.426 ± 0.037 M⊙, and planet, m_p = 3.27 ± 0.32M_(Jupiter) with a projected separation of 3.4 ± 0.5 au. This confirms the tentative conclusion of a previous paper that this super-Jupiter mass planet, OGLE-2005-BLG-071Lb, orbits an M dwarf. Such planets are predicted to be rare by the core accretion theory and have been difficult to find with other methods, but there are two such planets with firm mass measurements from microlensing, and an additional 11 planetary microlens events with host mass estimates <0. 0.5M⊙ and planet mass estimates >2 Jupiter masses that could be confirmed by high angular follow-up observations. We also point out that OGLE-2005-BLG-071L has separated far enough from its host star that it should be possible to measure the host-star metallicity with spectra from a high angular resolution telescope such as Keck, the Very Large Telescope, the Hubble Space Telescope, or the James Webb Space Telescope
    • …
    corecore