127 research outputs found

    3D-BBS: Global Localization for 3D Point Cloud Scan Matching Using Branch-and-Bound Algorithm

    Full text link
    This paper presents an accurate and fast 3D global localization method, 3D-BBS, that extends the existing branch-and-bound (BnB)-based 2D scan matching (BBS) algorithm. To reduce memory consumption, we utilize a sparse hash table for storing hierarchical 3D voxel maps. To improve the processing cost of BBS in 3D space, we propose an efficient roto-translational space branching. Furthermore, we devise a batched BnB algorithm to fully leverage GPU parallel processing. Through experiments in simulated and real environments, we demonstrated that the 3D-BBS enabled accurate global localization with only a 3D LiDAR scan roughly aligned in the gravity direction and a 3D pre-built map. This method required only 878 msec on average to perform global localization and outperformed state-of-the-art global registration methods in terms of accuracy and processing speed.Comment: IEEE International Conference on Robotics and Automation (ICRA2024

    World Robot Challenge 2020 -- Partner Robot: A Data-Driven Approach for Room Tidying with Mobile Manipulator

    Full text link
    Tidying up a household environment using a mobile manipulator poses various challenges in robotics, such as adaptation to large real-world environmental variations, and safe and robust deployment in the presence of humans.The Partner Robot Challenge in World Robot Challenge (WRC) 2020, a global competition held in September 2021, benchmarked tidying tasks in the real home environments, and importantly, tested for full system performances.For this challenge, we developed an entire household service robot system, which leverages a data-driven approach to adapt to numerous edge cases that occur during the execution, instead of classical manual pre-programmed solutions. In this paper, we describe the core ingredients of the proposed robot system, including visual recognition, object manipulation, and motion planning. Our robot system won the second prize, verifying the effectiveness and potential of data-driven robot systems for mobile manipulation in home environments

    Elevated Levels of Serum Pentosidine Are Associated with Dropped Head Syndrome in Older Women

    Get PDF
    Study Design A retrospective observational study was performed. Purpose We investigated the prevalence of sarcopenia in dropped head syndrome (DHS), and the relationship between biochemical markers, including major advanced glycation end products (AGEs), pentosidine, and DHS in older women. Overview of Literature AGEs have been implicated in the pathogenesis of sarcopenia. Methods We studied 13 elderly women with idiopathic DHS (mean age, 77.2 years) and 20 healthy volunteers (mean age, 74.8 years). We used a bioelectrical impedance analyzer to analyze body composition, including appendicular skeletal muscle mass index (SMI; appendicular lean mass [kg]/[height (m)]2). Cervical sagittal plane alignment, including C2–C7 sagittal vertical axis (C2–C7SVA), C2–C7 angle, and C2 slope (C2S), was measured. Biochemical markers, such as serum and urinary pentosidine, serum homocysteine, 1, 25-dihydroxyvitamin D, and 25-hydroxyvitamin D, were measured. The level of each variable was compared between DHS and controls. The relationship between biochemical markers and DHS was examined. Results Sarcopenia (SMI <5.75) was observed at a high prevalence in participants with DHS (77% compared to 22% of healthy controls). Height, weight, femoral bone mineral density, appendicular lean mass, total lean mass, and SMI all had significantly lower values in the DHS group. Serum and urinary pentosidine, and serum homocysteine were significantly higher in the DHS group compared to controls. Analysis of cervical alignment revealed a significant positive correlation of serum pentosidine with C2–C7SVA and C2S. Conclusions Sarcopenia was involved in DHS, and high serum pentosidine levels are associated with severity of DHS in older women

    Abnormal axon guidance signals and reduced interhemispheric connection via anterior commissure in neonates of marmoset ASD model

    Get PDF
    In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate model of ASD, the common marmoset with maternal exposure to valproic acid (VPA), which has been reported to display social recognition deficit in adulthood. Using a comprehensive gene expression analysis, we found that 20 genes were significantly downregulated in VPA-exposed neonates. Of these, Frizzled3 (FZD3) and PIK3CA were identified in an axon guidance signaling pathway. FZD3 is essential for the normal development of the anterior commissure (AC) and corpus callosum (CC); hence, we performed diffusion tensor magnetic resonance imaging with a 7-Tesla scanner to measure the midsagittal sizes of these structures. We found that the AC size in VPA-exposed neonates was significantly smaller than that in age-matched controls, while the CC size did not differ. These results suggest that downregulation of the genes related to axon guidance and decreased AC size in neonatal primates may be linked to social brain dysfunctions that can happen later in life
    corecore