151 research outputs found

    The Histone H4 Lysine 20 Monomethyl Mark, Set by PR-Set7 and Stabilized by L(3)mbt, Is Necessary for Proper Interphase Chromatin Organization

    Get PDF
    Drosophila PR-Set7 or SET8 is a histone methyltransferase that specifically monomethylates histone H4 lysine 20 (H4K20). L(3)MBT has been identified as a reader of methylated H4K20. It contains several conserved domains including three MBT repeats binding mono- and dimethylated H4K20 peptides. We find that the depletion of PR-Set7 blocks de novo H4K20me1 resulting in the immediate activation of the DNA damage checkpoint, an increase in the size of interphase nuclei, and drastic reduction of cell viability. L(3)mbt on the other hand stabilizes the monomethyl mark, as L(3)mbt-depleted S2 cells show a reduction of more than 60% of bulk monomethylated H4K20 (H4K20me1) while viability is barely affected. Ploidy and basic chromatin structure show only small changes in PR-Set7-depleted cells, but higher order interphase chromatin organization is significantly affected presumably resulting in the activation of the DNA damage checkpoint. In the absence of any other known functions of PR-Set7, the setting of the de novo monomethyl mark appears essential for cell viability in the presence or absence of the DNA damage checkpoint, but once newly assembled chromatin is established the monomethyl mark, protected by L(3)mbt, is dispensable

    Climatic and atmospheric histories over the past 700,000 years from the Dome Fuji deep ice core, Antarctica

    Get PDF
    第3回極域科学シンポジウム 横断セッション「海・陸・氷床から探る後期新生代の南極寒冷圏環境変動」11月26日(月) 国立国語研究所 2階講

    Effects of Melophlins on Colony Formation of Chinese Hamster V79 Cells and IL-8 Production in PMA-stimulated HL-60 Cells

    Get PDF
    We have recently isolated four new melophlins P (1), Q (2), R (3), and S (4) together with seven known melophlins A (5), D (6), E (7), G (8), H (9), I (10), and O (11) from two marine sponges of the genus Melophlus collected in Palau. In this study, the influence of these compounds on the colony formation of Chinese hamster V79 cells and the production of IL-8 in PMA-stimulated HL-60 cells were examined. These 11 compounds did not show any effect on IL-8 production. The EC50 values of compounds 2, 3, 4, 5, 7, 9, 10, and 11 against V79 cells were 44.0, 13.3, 16.7, 27.2, 19.8, 8.5, 23.1, and 9.6 μM, respectively. The linear-chain-type compounds (1, 6, and 8) were not active against V79 cells at 50 μM. Although the growth inhibitory activity of these melophlins was not remarkable, some structure-activity relationships of these compounds against V79 and murine leukemia L1210 cells were observed

    L-Ascorbate Biosynthesis Involves Carbon Skeleton Rearrangement in the Nematode Caenorhabditis elegans

    Get PDF
    Ascorbate (AsA) is required as a cofactor and is widely distributed in plants and animals. Recently, it has been suggested that the nematode Caenorhabditis elegans also synthesizes AsA. However, its biosynthetic pathway is still unknown. To further understand AsA biosynthesis in C. elegans, we analyzed the incorporation of the 13C atom into AsA using gas chromatography-mass spectrometry (GC-MS) in worms fed with D-Glc (1-13C)-labeled Escherichia coli. GC-MS analysis revealed that AsA biosynthesis in C. elegans, similarly to that in mammalian systems, involves carbon skeleton rearrangement. The addition of L-gulono-1,4-lactone, an AsA precursor in the mammalian pathway, significantly increased AsA level in C. elegans, whereas the addition of L-galactono-1,4-lactone, an AsA precursor in the plant and Euglena pathway, did not affect AsA level. The suppression of E03H4.3 (an ortholog of gluconolactonase) or the deficiency of F54D5.12 (an ortholog of L-gulono-1,4-lactone oxidase) significantly decreased AsA level in C. elegans. Although N2- and AsA-deficient F54D5.12 knockout mutant worm (tm6671) morphologies and the ratio of collagen to non-collagen protein did not show any significant differences, the mutant worms exhibited increased malondialdehyde levels and reduced lifespan compared with the N2 worms. In conclusion, our findings indicate that the AsA biosynthetic pathway is similar in C. elegans and mammals

    A novel transgenic chimaeric mouse system for the rapid functional evaluation of genes encoding secreted proteins

    Get PDF
    A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras

    Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Solanaceae family includes several economically important vegetable crops. The tomato (<it>Solanum lycopersicum</it>) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance.</p> <p>Results</p> <p>To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%.</p> <p>Conclusion</p> <p>The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom <url>http://www.pgb.kazusa.or.jp/kaftom/</url> via the website of the National Bioresource Project Tomato <url>http://tomato.nbrp.jp</url>.</p

    Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: Possible association with malignancy

    Get PDF
    Objectives: Myositis-specific autoantibodies (MSAs) are useful tools for identifying clinically homogeneous subsets and predicting prognosis of patients with idiopathic inflammatory myopathies (IIM) including polymyositis (PM) and dermatomyositis (DM). Recent studies have shown that anti-NXP2 antibody (Ab) is a major MSA in juvenile dermatomyositis (JDM). In this study the frequencies and clinical associations of anti-NXP2 Ab were evaluated in adult patients with IIM. Methods: Clinical data and serum samples were collected from 507 adult Japanese patients with IIM (445 with DM and 62 with PM). Eleven patients with JDM, 108 with systemic lupus erythematosus, 433 with systemic sclerosis and 124 with idiopathic pulmonary fibrosis were assessed as disease controls. Serum was examined for anti-NXP2 Ab by immunoprecipitation and western blotting using polyclonal anti-NXP2 Ab. Results: Seven patients (1.6%) with adult DM and one (1.6%) with adult PM were positive for anti-NXP2 Ab. Except for two patients with JDM, none of the disease controls were positive for this autoantibody. Among eight adult patients with IIM, three had internal malignancies within 3 years of diagnosis of IIM. Another patient with DM also had a metastatic cancer at the diagnosis. All of the carcinomas were at an advanced stage (stage IIIb-IV). Conclusions: While less common than in juvenile IIM, anti-NXP2 Ab was found in adult IIM. Anti-NXP2 Ab may be associated with adult IIM with malignancy
    corecore