1,008 research outputs found

    Switching field and thermal stability of CoPt/Ru dot arrays with various thicknesses

    Get PDF
    The switching fields and thermal stability of CoPt/Ru dot arrays with various dot thickness delta (5-20 nm) were experimentally investigated as a function of the dot diameter, D, (130-300 nm). All dot arrays showed a single domain state, even after removal of an applied field equal to the remanence coercivity Hr. The angular dependence of Hr for the dot arrays indicated coherent rotation of the magnetization during nucleation. We estimated the values of the "intrinsic" remanence coercivity H0 obtained by subtracting the effect of thermal agitation on the magnetization and the stabilizing energy barrier to nucleation E0/(kBT). The variation in H0 as a function of delta and D was qualitatively in good agreement with that of the effective anisotropy field at the dot center Hk eff(r=0), calculated taking account of the demagnetizing field in the dots. The ratio of H 0 to Hk eff(r=0) for the dot arrays with delta=10 nm increased from 0.53 to 0.70 as D decreased from 300 to 140 nm, and no significant difference in the H0/Hk eff(r=0) ratio due to the difference in delta was observed. On the other hand, E0/(k BT) decreased as delta decreased. E0/(kBT) increased slightly as D decreased, but, was not so sensitive to D over the present D rang

    Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial masses

    Full text link
    We have developed a new method for determining microscopically the fivedimensional quadrupole collective Hamiltonian, on the basis of the adiabatic self-consistent collective coordinate method. This method consists of the constrained Hartree-Fock-Bogoliubov (HFB) equation and the local QRPA (LQRPA) equations, which are an extension of the usual QRPA (quasiparticle random phase approximation) to non-HFB-equilibrium points, on top of the CHFB states. One of the advantages of our method is that the inertial functions calculated with this method contain the contributions of the time-odd components of the mean field, which are ignored in the widely-used cranking formula. We illustrate usefulness of our method by applying to oblate-prolate shape coexistence in 72Kr and shape phase transition in neutron-rich Cr isotopes around N=40.Comment: 6pages, talk given at Rutherford Centennial Conference on Nuclear Physics, 8 - 12 August 2011, The University of Mancheste

    Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding

    Get PDF
    A new sugar-substituted 2-oxazoline monomer was prepared using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Its copolymerization with 2-ethyl-2-oxazoline as well as 2-(dec-9-enyl)-2-oxazoline, yielding well-defined copolymers with the possibility to tune the properties by thiol-ene "click" reactions, is described. Extensive solubility studies on the corresponding glycocopolymers demonstrated that the lower critical solution temperature behavior and pH-responsiveness of these copolymers can be adjusted in water and phosphate-buffered saline (PBS) depending on the choice of the thiol. By conjugation of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose and subsequent deprotection of the sugar moieties, the hydrophilicity of the copolymer could be increased significantly, allowing a cloud-point tuning in the physiological range. Furthermore, the binding capability of the glycosylated copoly(2-oxazoline) to concanavalin A was investigated

    Shallow and diffuse spin-orbit potential for proton elastic scattering from neutron-rich helium isotopes at 71 MeV/nucleon

    Full text link
    Vector analyzing powers for proton elastic scattering from 8He at 71 MeV/nucleon have been measured using a solid polarized proton target operated in a low magnetic field of 0.1 T. The spin-orbit potential obtained from a phenomenological optical model analysis is found to be significantly shallower and more diffuse than the global systematics of stable nuclei, which is an indication that the spin-orbit potential is modified for scattering involving neutron-rich nuclei. A close similarity between the matter radius and the root-mean-square radius of the spin-orbit potential is also identified.Comment: 6 pages, 4 figures, accepted for publication in Physical Review C Rapid Communicatio

    Coulomb and nuclear breakup of a halo nucleus 11Be

    Get PDF
    Breakup reactions of the one-neutron halo nucleus 11Be on Pb and C targets at about 70 MeV/u have been investigated by measuring the momentum vectors of the incident 11Be, outgoing 10Be, and neutron in coincidence. The relative energy spectra as well as the angular distributions of the 10Be+n center of mass have been extracted for both targets. For the breakup on Pb target, the selection of forward scattering angles is found to be effective to extract almost purely the first-order E1 Coulomb breakup component, and to exclude the nuclear contribution and higher-order Coulomb breakup components. This angle-selected energy spectrum is thus used to deduce the spectroscopic factor for the 10Be(0+) 2s_1/2 configuration in 11Be which is found to be 0.72+-0.04 with B(E1) up to Ex=4 MeV of 1.05+-0.06 e2fm2. The energy weighted E1 strength up to Ex=4 MeV explains 70+-10% of the cluster sum rule, consistent with the obtained spectroscopic factor. The non-energy weighted sum rule is used to extract the root mean square distance of the halo neutron to be 5.77(16) fm, consistent with previously known values. In the breakup with C target, we have observed the excitations to the known unbound states in 11Be at Ex=1.78 MeV and 3.41 MeV. Angular distributions for these states show the diffraction pattern characteristic of L=2 transitions, resulting in J^pi =(3/2,5/2)+ assignment for these states. We finally find that even for the C target the E1 Coulomb direct breakup mechanism becomes dominant at very forward angles.Comment: 14 pages, 7 figures, accepted for publication on Physical Review
    corecore