1,017 research outputs found

    Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial masses

    Full text link
    We have developed a new method for determining microscopically the fivedimensional quadrupole collective Hamiltonian, on the basis of the adiabatic self-consistent collective coordinate method. This method consists of the constrained Hartree-Fock-Bogoliubov (HFB) equation and the local QRPA (LQRPA) equations, which are an extension of the usual QRPA (quasiparticle random phase approximation) to non-HFB-equilibrium points, on top of the CHFB states. One of the advantages of our method is that the inertial functions calculated with this method contain the contributions of the time-odd components of the mean field, which are ignored in the widely-used cranking formula. We illustrate usefulness of our method by applying to oblate-prolate shape coexistence in 72Kr and shape phase transition in neutron-rich Cr isotopes around N=40.Comment: 6pages, talk given at Rutherford Centennial Conference on Nuclear Physics, 8 - 12 August 2011, The University of Mancheste

    Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding

    Get PDF
    A new sugar-substituted 2-oxazoline monomer was prepared using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Its copolymerization with 2-ethyl-2-oxazoline as well as 2-(dec-9-enyl)-2-oxazoline, yielding well-defined copolymers with the possibility to tune the properties by thiol-ene "click" reactions, is described. Extensive solubility studies on the corresponding glycocopolymers demonstrated that the lower critical solution temperature behavior and pH-responsiveness of these copolymers can be adjusted in water and phosphate-buffered saline (PBS) depending on the choice of the thiol. By conjugation of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose and subsequent deprotection of the sugar moieties, the hydrophilicity of the copolymer could be increased significantly, allowing a cloud-point tuning in the physiological range. Furthermore, the binding capability of the glycosylated copoly(2-oxazoline) to concanavalin A was investigated

    Coulomb and nuclear breakup of a halo nucleus 11Be

    Get PDF
    Breakup reactions of the one-neutron halo nucleus 11Be on Pb and C targets at about 70 MeV/u have been investigated by measuring the momentum vectors of the incident 11Be, outgoing 10Be, and neutron in coincidence. The relative energy spectra as well as the angular distributions of the 10Be+n center of mass have been extracted for both targets. For the breakup on Pb target, the selection of forward scattering angles is found to be effective to extract almost purely the first-order E1 Coulomb breakup component, and to exclude the nuclear contribution and higher-order Coulomb breakup components. This angle-selected energy spectrum is thus used to deduce the spectroscopic factor for the 10Be(0+) 2s_1/2 configuration in 11Be which is found to be 0.72+-0.04 with B(E1) up to Ex=4 MeV of 1.05+-0.06 e2fm2. The energy weighted E1 strength up to Ex=4 MeV explains 70+-10% of the cluster sum rule, consistent with the obtained spectroscopic factor. The non-energy weighted sum rule is used to extract the root mean square distance of the halo neutron to be 5.77(16) fm, consistent with previously known values. In the breakup with C target, we have observed the excitations to the known unbound states in 11Be at Ex=1.78 MeV and 3.41 MeV. Angular distributions for these states show the diffraction pattern characteristic of L=2 transitions, resulting in J^pi =(3/2,5/2)+ assignment for these states. We finally find that even for the C target the E1 Coulomb direct breakup mechanism becomes dominant at very forward angles.Comment: 14 pages, 7 figures, accepted for publication on Physical Review

    Investigating neutron-proton pairing in sd -shell nuclei via (p, He 3) and (He 3,p) transfer reactions

    Get PDF
    Neutron-proton pairing correlations are investigated in detail via np transfer reactions in N = Z sd-shell nuclei. In particular, we study the cross-section ratio of the lowest 0+ and 1+ states as an observable to quantify the interplay between T = 0 (isoscalar) and T = 1 (isovector) pairing strengths. The experimental results are compared to second-order distorted-wave Born approximation calculations with proton-neutron amplitudes obtained in the shell-model formalism using the universal sd-shell interaction B. Our results suggest underestimation of the nonneglible isoscalar pairing strength in the shell-model descriptions at the expense of the isovector channel.SĂ©ptimo Programa Marco de la ComisiĂłn Europea-FP7/2007-2013 00376National Science Foundation (NSF) de los Estados Unidos-PHY-1404442US Department of Energy, Office of Science, Office of Nuclear Physics-DE-AC02-05CH1123

    Projectile fragmentation reactions and production of nuclei near the neutron drip-line

    Get PDF
    The reaction mechanism of projectile fragmentation at intermediate energies has been investigated observing the target dependence of the production cross sections of very neutron-rich nuclei. Measurement of longitudinal momentum distributions of projectile-like fragments within a wide range of fragment mass and its charge was performed using a hundred-MeV/n 40^{40}Ar beam incident on Be and Ta targets. By measurement of fragment momentum distribution, a parabolic mass dependence of momentum peak shift was observed in the results of both targets, and a phenomenon of light-fragment acceleration was found only in the Be-target data. The analysis of production cross sections revealed an obvious enhancement of the target dependence except target size effect when the neutron excess is increased. This result implies the breakdown of factorization (BOF) of production cross sections for very neutron-rich nuclei near the drip line.Comment: 16 pages, 18 figures, submitted to Phys. Rev.

    Measurement of excited states in 40Si and evidence for weakening of the N=28 shell gap

    Get PDF
    Excited states in 40Si have been established by detecting gamma-rays coincident with inelastic scattering and nucleon removal reactions on a liquid hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state provides evidence of a weakening in the N=28 shell closure in a neutron-rich nucleus devoid of deformation-driving proton collectivity.Comment: accepted for publication in PR

    Minimalistic control of biped walking in rough terrain

    Get PDF
    Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the “phase locking” mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain.National Science Foundation (U.S.) (grant 0746194)Swiss National Science Foundation (grant PBZH2-114461)Swiss National Science Foundation (grant PP00P2_123387/1
    • 

    corecore