12 research outputs found

    Orbital Debris Quarterly News

    Get PDF
    No abstract availabl

    Orbital Debris Quarterly News

    Get PDF
    The Indian spacecraft Microsat-R (International Designator 2019-006A, U.S. Strategic Command [USSTRATCOM] Space Surveillance Network [SSN] catalog number 43947), launched on 24 January 2019, was intentionally destroyed in a test of a ground-based, direct-ascent Anti-Satellite (ASAT) weapon system at 0640 GMT on 27 March 2019. At the time of breakup the 740 kg spacecraft was in an approximately 294 x 265 km altitude, 96.63 orbit. A total of 101 debris have entered the public satellite catalog (through object 2019-006DF), of which 49 fragments remain on-orbit as of 15 July 2019. However, over 400 fragments were initially tracked by SSN sensors and cataloging is complicated by the low altitude of the event and the concomitant rapid orbital decay. A Gabbard plot of this debris cloud is presented in the figure on page 2. A Centaur V Single-Engine Centaur (SEC) rocket variant (International Designator 2018-079B, SSN number 43652) fragmented in early April 2019. At the time of the event the stage was in an approximately 35,092 x 8526 km altitude, 12.2 orbit. This Centaur V upper stage is associated with the launch of the USA 288, or Advanced Extremely High Frequency 4 (AEHF 4), spacecraft from the (U.S.) Air Force Eastern Test Range on 17 October 2018. The cause of the event is unknown. No debris have entered the catalog at this time, but the ODQN will provide updates should they become publicly available

    Orbital debris environment for spacecraft designed to operate in low Earth orbit

    Get PDF
    The orbital debris environment model is intended to be used by the spacecraft community for the design and operation of spacecraft in low Earth orbit. This environment, when combined with material-dependent impact tests and spacecraft failure analysis, is intended to be used to evaluate spacecraft vulnerability, reliability, and shielding requirements. The environment represents a compromise between existing data to measure the environment, modeling of this data to predict the future environment, the uncertainty in both measurements and modeling, and the need to describe the environment so that various options concerning spacecraft design and operations can be easily evaluated

    History of On-Orbit Satellite Fragmentations, 15th Edition

    Get PDF
    The History of On-Orbit Satellite Fragmentations chronicles all known satellite fragmentation events, this 15th edition complete through a suspense date of 4 July 2018. Since the 14th edition breakups, in addition to launch activity, have resulted in an approximately 36% increase in the number of cataloged space objects. More significantly, breakup and anomalous debris accounted for 65% of the catalog growth observed. The reason for these large increases was the first accidental collision of two intact spacecraft, Iridium 33 and Cosmos 2251, and the continued cataloging of debris created by the intentional destruction of the Fengyun 1C spacecraft-the most environmentally harmful fragmentation to date

    Historical growth of quantities affecting on-orbit collision hazard

    No full text

    The Fifteen-Year Attitude History of the Wide Field Planetary Camera 2 Radiator and Collection Efficiencies for Micrometeoroids and Orbital Debris

    No full text
    An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was a distinct biasing of the largest 45 impact features towards one side of the radiator, in contrast to an approximately uniform distribution of smaller impacts. Such a distribution may be a consequence of the HST s attitude history and pointing requirements for the cold radiator, or of environmental effects, such as an anisotropic distribution of the responsible population in that size regime. Understanding the size-dependent spatial distribution of impact features is essential to the general analysis of these features. We have obtained from GSFC a 15 minute temporal resolution record of the state vector (Earth Centered Inertial position and velocity) and HST attitude, consisting of the orientation of the velocity and HST-sun vectors in HST body coordinates. This paper reviews the actual state vector and attitude history of the radiator in the context of the randomly tumbling plate assumption and assesses the statistical likelihood (or collection efficiency) of the radiator for the micrometeoroid and orbital debris environments. The NASA Marshall Space Flight Center s Meteoroid Environment Model is used to assess the micrometeoroid component. The NASA Orbital Debris Engineering Model (ORDEM) is used to model the orbital debris component. Modeling results are compared with observations of the impact feature spatial distribution, and the relative contribution of each environmental component are examined in detail

    The New NASA Orbital Debris Engineering Model ORDEM2000

    No full text
    The NASA Orbital Debris Program Office at Johnson Space Center has developed a new computer-based orbital debris engineering model, ORDEM2000, which describes the orbital debris environment in the low Earth orbit region between 200 and 2000 km altitude. The model is appropriate for those engineering solutions requiring knowledge and estimates of the orbital debris environment (debris spatial density, flux, etc.). ORDEM2000 can also be used as a benchmark for ground-based debris measurements and observations. We incorporated a large set of observational data, covering the object size range from 10 mm to 10 m, into the ORDEM2000 debris database, utilizing a maximum likelihood estimator to convert observations into debris population probability distribution functions. These functions then form the basis of debris populations. We developed a finite element model to process the debris populations to form the debris environment. A more capable input and output structure and a user-friendly graphical user interface are also implemented in the model. ORDEM2000 has been subjected to a significant verification and validation effort. This document describes ORDEM2000, which supersedes the previous model, ORDEM96. The availability of new sensor and in situ data, as well as new analytical techniques, has enabled the construction of this new model. Section 1 describes the general requirements and scope of an engineering model. Data analyses and the theoretical formulation of the model are described in Sections 2 and 3. Section 4 describes the verification and validation effort and the sensitivity and uncertainty analyses. Finally, Section 5 describes the graphical user interface, software installation, and test cases for the user
    corecore