47 research outputs found

    Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination

    Get PDF
    Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.Peer reviewe

    Vaccination against coronavirus disease 2019 in patients with pulmonary hypertension: a national prospective cohort study

    Get PDF
    Background: Coronavirus disease 2019 (COVID-19) has potential risks for both clinically worsening pulmonary hypertension (PH) and increasing mortality. However, the data regarding the protective role of vaccination in this population are still lacking. This study aimed to assess the safety of approved vaccination for patients with PH. Methods: In this national prospective cohort study, patients diagnosed with PH (World Health Organization [WHO] groups 1 and 4) were enrolled from October 2021 to April 2022. The primary outcome was the composite of PH-related major adverse events. We used an inverse probability weighting (IPW) approach to control for possible confounding factors in the baseline characteristics of patients. Results: In total, 706 patients with PH participated in this study (mean age, 40.3 years; mean duration after diagnosis of PH, 8.2 years). All patients received standardized treatment for PH in accordance with guidelines for the diagnosis and treatment of PH in China. Among them, 278 patients did not receive vaccination, whereas 428 patients completed the vaccination series. None of the participants were infected with COVID-19 during our study period. Overall, 398 patients received inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, whereas 30 received recombinant protein subunit vaccine. After adjusting for baseline covariates using the IPW approach, the odds of any adverse events due to PH in the vaccinated group did not statistically significantly increase (27/428 [6.3%] vs. 24/278 [8.6%], odds ratio = 0.72, P = 0.302). Approximately half of the vaccinated patients reported at least one post-vaccination side effects, most of which were mild, including pain at the injection site (159/428, 37.1%), fever (11/428, 2.6%), and fatigue (26/428, 6.1%). Conclusions: COVID-19 vaccination did not significantly augment the PH-related major adverse events for patients with WHO groups 1 and 4 PH, although there were some tolerable side effects. A large-scale randomized controlled trial is warranted to confirm this finding. The final approval of the COVID-19 vaccination for patients with PH as a public health strategy is promising

    Neural Network-Based Approximation Model for Perturbed Orbit Rendezvous

    No full text
    An approximation of orbit rendezvous is usually used in the global optimization of multi-target rendezvous missions, which can greatly affect the efficiency of optimization process. A fast neural network-based surrogate model is proposed to approximate the optimal velocity increment of perturbed orbit rendezvous in low Earth orbits. According to a dynamic analysis, the initial and target orbits together with the flight time are transformed into a nine-dimensional normalized vector that is used as the input layer of the neural network. An existing approximation method is introduced to quickly generate the training data. In simulations, different numbers of layer nodes and hidden layers are tested to choose the best parameters. The proposed neural network model demonstrates high precision and high efficiency compared with previous approximation methods and neural network models. The mean relative error is less than 1%. Finally, a case of an optimization of a multi-target rendezvous mission is tested to prove the potential application of the neural network model

    Neural Network-Based Approximation Model for Perturbed Orbit Rendezvous

    No full text
    An approximation of orbit rendezvous is usually used in the global optimization of multi-target rendezvous missions, which can greatly affect the efficiency of optimization process. A fast neural network-based surrogate model is proposed to approximate the optimal velocity increment of perturbed orbit rendezvous in low Earth orbits. According to a dynamic analysis, the initial and target orbits together with the flight time are transformed into a nine-dimensional normalized vector that is used as the input layer of the neural network. An existing approximation method is introduced to quickly generate the training data. In simulations, different numbers of layer nodes and hidden layers are tested to choose the best parameters. The proposed neural network model demonstrates high precision and high efficiency compared with previous approximation methods and neural network models. The mean relative error is less than 1%. Finally, a case of an optimization of a multi-target rendezvous mission is tested to prove the potential application of the neural network model

    Extended Polar Format Algorithm (EPFA) for High-Resolution Highly Squinted SAR

    No full text
    The conventional polar format algorithm (CPFA) is widely used for synthetic aperture radar (SAR) because of its simple and efficient operations. However, due to its wavefront curvature assumption, the CPFA’s depth-of-focus (DOF) is extremely small, which greatly limits the scene size, especially for high-resolution and highly squinted (HRHS) SAR. To solve this problem, an extended PFA (EPFA) is proposed in this study, re-deriving mapping functions by expanding the range history into slant- and cross-range components according to the forms of real data storage. This allows the full use of storage data, which the CPFA cannot achieve due to the large approximations introduced by the projection of echo data onto the ground. The wavefront curvature error is then analyzed and eliminated using a space-variant phase compensation function. Due to the high accuracy of expansion in the slant range plane and the space-variant correction processing, the EPFA has a larger DOF than the CPFA. The EPFA is also more suitable for undulating terrains since it avoids the projection of real data onto the ground plane performed in the CPFA. Using comparative analyses of simulated data and real-world images, the results suggest that the proposed EPFA achieves better focusing effects than the CPFA and is particularly useful for HRHS SAR

    Risk factors of regional lymph node metastasis in patients with cervical cancer

    No full text
    To explore the risk factors related to regional lymph node metastasis in cervical cancer and analyze the value of independent risk factors in predicting regional lymph node metastasis

    Understanding gaseous nitrogen removal through direct measurement of dissolved N2 and N2O in a subtropical river-reservoir system

    No full text
    Dam construction within a river basin modifies hydrology and affects nitrogen (N) removal during transport to coast. In this study, direct measurements of dissolved N2 and N2O were carried out in a subtropical river reservoir (Xipi) in southeast China to understand the effectiveness of reservoirs in removal of fixed N by N gas fluxes. Results showed that larger excess N2 and N2O emissions were found in the riverine zone where effluents from the upper dam mix with the shallow river. Excess N2, mainly derived from denitrification, occurred in the sediment below deep water, while N2O was largely produced from nitrification in the water column, particularly in dry season. Seasonal variation of excess N2 was associated with temperature and DO level, while N2O production was controlled by DIN concentration. The gaseous N dynamics and distribution in the studied reservoir reflected an interactive effect of hydrology, geomorphology and biogeochemistry. In the reservoir lacustrine zone, gaseous N removal accounted for 85% of total retention and less than 1% of DIN loads. The negligible retention of N by the reservoir highlights the importance of appropriate watershed management practices to reduce N losses from terrestrial systems. ? 2014 Elsevier B.V

    From Pollution to Green and Low-Carbon Island Revitalization: Implications of Exhibition-Driven Sustainable Tourism (Triennale) for SDG 8.9 in Setouchi

    No full text
    After the severe industrial pollution from World War II, the Setouchi Sea areas and its islands (the Triennale hosting areas) experienced severe economic and population shrinkage. The target of SDG 8.9 is to promote “direct tourism GDP” and “tourism-related jobs” by devising and implementing policies (e.g., some Triennale and Biennale) for sustainable tourism. Triennale-driven tourism is an essential component of sustainable tourism and city revitalization, lasting almost 20 years in Japan. The current paper attempts an empirical analysis into the positive impacts of exhibition-driven sustainable tourism for SDG 8.9 in these rural islands (from pollution to green and low-carbon islands revitalization). The panel data of “pollution load of living environment items” by cities in Japan and “tourists, income, and population” from 14 areas in Kagawa were monitored using multiple methods, such as descriptive and inferential statistics (the one-way ANOVA test and Simple Linear Regression (SLR)). It is a new attempt to devise and implement policies and theories for a sustainable tourism-related industry and its SDGs. Therefore, the present findings offer meaningful implications in academia and industry, not only in Setouchi Sea areas but also for similar areas in and out of Japan
    corecore