5 research outputs found

    Heavy metal uptake by agro based waste materials

    Get PDF
    Presence of heavy metals in the aquatic systems has become a serious problem. As a result, there has been a great deal of attention given to new technologies for removal of heavy metal ions from contaminated waters. Biosorption is one such emerging technology which utilized naturally occurring waste materials to sequester heavy metals from industrial wastewater. The aim of the present study was to utilize the locally available agricultural waste materials for heavy metal removal from industrial wastewater. The wastewater containing lead and hexavalent chromium was treated with biomass prepared from ficus religiosa leaves. It was fund that a time of one hr was sufficient for sorption to attain equilibrium. The equilibrium sorption capacity after one hr was 16.95 \ub1 0.75 mg g-1 and 5.66 \ub1 0.43 mg g-1 for lead and chromium respectively. The optimum pH was 4 for lead and 1 for chromium. Temperature has strong influence on biosorption process. The removal of lead decreased with increase in temperature. On the other hand chromium removal increased with increase in temperature up to 40\ub0C and then started decreasing. Ion exchange was the major removal mechanism along with physical sorption and precipitation. The biosorption data was well fitted to Langmuir adsorption model. The kinetics of biosorption process was well described by the pseudo 2nd order kinetics model. It was concluded that adsorbent prepared from ficus religiosa leaves can be utilized for the treatment of heavy metals in wastewater

    Heavy metal uptake by agro based waste materials

    Get PDF
    Presence of heavy metals in the aquatic systems has become a serious problem. As a result, there has been a great deal of attention given to new technologies for removal of heavy metal ions from contaminated waters. Biosorption is one such emerging technology which utilized naturally occurring waste materials to sequester heavy metals from industrial wastewater. The aim of the present study was to utilize the locally available agricultural waste materials for heavy metal removal from industrial wastewater. The wastewater containing lead and hexavalent chromium was treated with biomass prepared from ficus religiosa leaves. It was fund that a time of one hr was sufficient for sorption to attain equilibrium. The equilibrium sorption capacity after one hr was 16.95 ± 0.75 mg g-1 and 5.66 ± 0.43 mg g-1 for lead and chromium respectively. The optimum pH was 4 for lead and 1 for chromium. Temperature has strong influence on biosorption process. The removal of lead decreased with increase in temperature. On the other hand chromium removal increased with increase in temperature up to 40°C and then started decreasing. Ion exchange was the major removal mechanism along with physical sorption and precipitation. The biosorption data was well fitted to Langmuir adsorption model. The kinetics of biosorption process was well described by the pseudo 2nd order kinetics model. It was concluded that adsorbent prepared from ficus religiosa leaves can be utilized for the treatment of heavy metals in wastewater

    Counteracting effects of heavy metals and antioxidants on male fertility

    No full text
    corecore