34 research outputs found

    Antioxidant, anti-cholinesterase, anti-α-glucosidase and prebiotic properties of beta-glucan extracted from Algerian barley

    Get PDF
    Beta-glucan, such as barley-derived beta-glucan (BBG), are homopolysaccharides that have attracted attention by their nutritional and therapeutic properties. The aim of this study was to evaluate the antioxidant power of BBG extracted from local Algerian variety of barley (SAIDA 183), and its acetylcholinesterase, alpha glucosidase inhibitory activity as well as its prebiotic potential by fermentation with lactic acid bacteria isolated from camel’s milk, namely lactococcuslactisssplactis (Lc.l.l) and leuconostocmesenteroidesspmesenteroides (Ln.m.m). The results revealed that BBG exhibited low activity against DPPH and ferric-reducing power (IC50 4018.61 ± 656.69 and A0.5 at 359.88 ±63.64 µg/mL respectively), in contrast to other antioxidant tests (ABTS, Beta-carotene and CUPRAC) where BBG demonstrated a moderate activity (IC50 529.91 ±26.37, IC50 161.013±13.322, A0.5 529.79 ± 48.65 µg/mL). The scavenging ability of hydroxyl radical and superoxide radical by BBG with an IC50 at 2268.38±101.57 µg/mL and IC50 345.26± 62.32 µg/mL, respectively, while enzymatic inhibition by  BBG exhibited for AChE at IC50 859.164 ±64.46 μg/mL , BChE at IC50 at 725.470 ±30.95 , α-Amylase inhibitory activity at IC50 2986.785 ± 37.046  . The bacterial growth of the two strains used in this study is favorably affected by the use of BBG as the only carbon source, in comparison with glucose as a control. In light of these findings, it can be concluded that BBG have shown moderate antioxidant and enzyme inhibitory activities and can be used as a prebiotic by acting synergistically with probiotics in functional food matrices

    Emerging Selenium Nanoparticles for CNS Intervention

    Get PDF
    Central nervous system (CNS) diseases have seriously impacted human wellness for the past few decades, specifically in developing countries, due to the unavailability of successful treatment. Due to the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier transport of drug and treatment of CNS disorders has become difficult. Nanoscale materials like Selenium nanoparticles (SeNPs) offer a possible therapeutic strategy for treating brain diseases like Alzheimer’s, Frontotemporal dementia, Amyotrophic lateral sclerosis, Epilepsy, Parkinson’s disease, and Huntington’s disease. After being functionalized with active targeting ligands, SeNPs are versatile and competent in conveying combinations of cargoes to certain targets. We shall pay close attention to the primarily targeted therapies for SeNPs in CNS diseases. The objective of this paper was to highlight new developments in the exploration of SeNP formation and their potential applications in the management of CNS diseases. Furthermore, we also discussed the mechanisms underlying management of CNS disease, several therapeutic potentials for SeNPs, and the results of their preclinical research using diverse animal models. These methods might lead to better clinical and diagnostic results

    Antioxidant and antibacterial activity of extract and phases from stems of Spartium junceum L. growing in Algeria

    Get PDF
    This work aimed to evaluate the antioxidant and antibacterial activities of the hydroalcoholic (80% methanol) extract and n-hexane (n-Hex), chloroform (Chl), ethyl acetate (EtAc), and n-butanol (n-But) phases from Spartium junceum L. stems collected inAlgeria. Preliminary phytochemical investigations on phenolic compounds have been carried out.The total phenolic content, spectrophotometrically determined, ranged from 71.8095 ± 3.7136 mg GAE/g (extract) to 0.0582 ± 0.0106 mg GAE/g (n-Hex). By HPLC-PDA analysis flavonoids (flavone derivatives), p-hydroxybenzoic acid, p-hydroxycinnamic acid, and cinnamic acid derivatives were identified both in the extract and phases.S. junceum extract showed a noticeable free radical scavenging effect in the DPPH test (IC50 = 0.6833 ± 0.0240 mg/mL), mild reducing power, and strong chelating activity (IC50 = 0.2292 ± 0.0138 mg/mL). Among the phases, n-But displayed the best effect both in the DPPH test and reducing power assay, whereas n-Hex resulted the most active in the ferrous ions chelating activity assay. A positive relationship between DPPH radical scavenging activity and total phenolic content was found. Both the extract and phases exhibited antimicrobial activity against Gram-positive bacteria only. Staphylococcus aureus ATCC 6538 was the most susceptible strain (MIC range: 15.60-250.00 µg/mL), and the Chl phase showed the greatest efficacy. S. junceum extract resulted non-toxic against Artemia salina.The obtained results demonstrate the potential of S. junceum stems as safe sources of natural antioxidant and antimicrobial compounds

    Synthesis, molecular docking, and dynamic simulation targeting main protease (Mpro) of new, Thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors

    Get PDF
    Many biological activities of pyridine and thiazole derivatives have been reported, including antiviral activity and, more recently, as COVID-19 inhibitors. Thus, in this paper, we designed, synthesized, and characterized a novel series of N-aminothiazole-hydrazineethyl-pyridines, beginning with a N′-(1-(pyridine-3-yl)ethylidene)hydrazinecarbothiohydrazide derivative and various hydrazonoyl chlorides and phenacyl bromides. Their Schiff bases were prepared from the condensation of N-aminothiazole derivatives with 4-methoxybenzaldehyde. FTIR, MS, NMR, and elemental studies were used to identify new products. The binding energy for non-bonding interactions between the ligand (studied compounds) and receptor was determined using molecular docking against the SARS-CoV-2 main protease (PDB code: 6LU7). Finally, the best docked pose with highest binding energy (8a = −8.6 kcal/mol) was selected for further molecular dynamics (MD) simulation studies to verify the outcomes and comprehend the thermodynamic properties of the binding. Through additional in vitro and in vivo research on the newly synthesized chemicals, it is envisaged that the achieved results will represent a significant advancement in the fight against COVID-19

    Clinical efficacy of hydroxychloroquine in patients with COVID-19: Findings from an observational comparative study in Saudi Arabia

    Get PDF
    The aim of this study was to assess the clinical effectiveness of Hydroxychloroquine-based regimens versus standard treatment in patients with the coronavirus disease admitted in 2019 to a hospital in Saudi Arabia. A comparative observational study, using routine hospital data, was carried out in a large tertiary care hospital in Al Baha, Saudi Arabia, providing care to patients with COVID-19 between April 2019 and August 2019. Patients were categorized into two groups: the Hydroxychloroquine (HCQ) group, treated with HCQ in a dose of 400 mg twice daily on the first day, followed by 200 mg twice daily; the non HCQ group, treated with other antiviral or antibacterial treatments according to protocols recommended by the Ministry of Health (MOH) at the time. The primary outcomes were the length of hospital stay, need for admission to the intensive care unit (ICU), time in ICU, and need for mechanical ventilation. Overall survival was also assessed. 568 patients who received HCQ (treatment group) were compared with 207 patients who did not receive HCQ (control group). HCQ did not improve mortality in the treated group (7.7% vs. 7.2%). There were no significant differences in terms of duration of hospitalization, need for and time in ICU, and need for mechanical ventilation among the groups. Our study provides further evidence that HCQ treatment does not reduce mortality rates, length of hospital stay, admission and time in ICU, and need for mechanical ventilation in patients hospitalized with COVID-19

    Cluster Identification of Diabetic Risk Factors among Saudi Population

    Get PDF
    Aims: The aim of the study was to estimate the prevalence and risk factors of diabetes mellitus among adult population of Albaha region, Saudi Arabia and to identify the diabetic risk clusters among Saudi population using various cluster analysis techniques. Study Design: Cross-sectional observation and Hierarchal cluster analyses. Place and Duration of Study: The study was conducted in three different cities of the Albaha region, Saudi Arabia including Albaha, AlAqiq and Baljurashi among Saudi adults 15 years of age or above. The study was carried out from April 2019 to May 2019. Methodology: The first part of the research was a random cross-sectional observational diabetic risk factors screening using a structured questionnaire among adult volunteers of the Albaha region. The second part constituted a multiple cluster analysis technique performed to identify the diabetic risk factors from 13 regions of Saudi Arabia, clustered into five main regions, using NCSS software. Results: In the first part, the risk factors identified among non-diabetic participants showed a significant association with the development of diabetes mellitus, particularly physical inactivity (49.12%), hypertension (41.15%), and high body mass index (19.03%). Likewise, in 11.54% of diabetic patients, elevated body mass index (30.51%), hypertension (27.12%) and physical inactivity (55.93%), which could be associated with diabetic complications. In the second part, the three forms of cluster analyses (the agglomerate hierarchical cluster, clustered heat map and K means clustering analysis) identified physical inactivity and high body mass index as key risk factors which are connected to all other risk factors among the total of 213591 volunteers. Conclusion: Increased prevalence of diabetes and risk of developing diabetes mellitus in the Kingdom require substantial education and training programs to counsel volunteers on all aspects of self-care. Our data provides a robust evidence to establish diabetic counseling through regular diabetes awareness program that can reduce the risk of developing diabetes mellitus

    Docking based 3D-QSAR Study of tricyclic guanidine analogues of batzelladine K as anti-malarial agents

    No full text
    The Plasmodium falciparum Lactate Dehydrogenase enzyme (PfLDH) catalyzes inter-conversion of pyruvate to lactate during glycolysis producing the energy required for parasitic growth. The PfLDH has been studied as a potential molecular target for development of anti-malarial agents. In an attempt to find the potent inhibitor of PfLDH, we have used Discovery studio to perform molecular docking in the active binding pocket of PfLDH by CDOCKER, followed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of tricyclic guanidine batzelladine compounds, which were previously synthesized in our laboratory. Docking studies showed that there is a very strong correlation between in silico and in vitro results. Based on docking results, a highly predictive 3D-QSAR model was developed with q2 of 0.516. The model has predicted r2 of 0.91 showing that predicted IC50 values are in good agreement with experimental IC50 values. The results obtained from this study revealed the developed model can be used to design new anti-malarial compounds based on tricyclic guanidine derivatives and to predict activities of new inhibitors

    Breast Cancer Drug Repurposing a Tool for a Challenging Disease

    No full text
    Drug repurposing is one of the best strategy for drug discovery. There are several examples where drug repurposing has revolutionized the drug development process, such as metformin developed for diabetes and is now employed in polycystic ovarian syndrome. Drug repurposing against breast cancer is currently a hot topic to look upon. With the continued rise in breast cancer cases, there is a dire need for new therapies that can tackle it in a better way. There is a rise of resistance to current therapies, so drug repurposing might produce some lead candidates that may be promising to treat breast cancer. We will highlight the breast cancer molecular targets, currently available drugs, problems with current therapy, and some examples that might be promising to treat it

    Berry anthocyanins reduce proliferation of human colorectal carcinoma cells by inducing caspase-3 activation and p21 upregulation

    Get PDF
    Colorectal cancer is the fourth most common type of cancer worldwide, and adenocarcinoma cells that form the majority of colorectal tumors are markedly resistant to antineoplastic agents. Epidemiological studies have demonstrated that consumption of fruits and vegetables that are rich in polyphenols, is linked to reduced risk of colorectal cancer. In the present study, the effect of a standardized anthocyanin (ACN)‑rich extract on proliferation, apoptosis and cell cycle in the Caco-2 human colorectal cancer cell line was evaluated by trypan blue and clonogenic assays and western blot analysis of cleaved caspase‑3 and p21Waf/Cif1. The results of the current study demonstrated that the ACN extract markedly decreased Caco‑2 cell proliferation, induced apoptosis by activating caspase‑3 cleavage, and upregulated cyclin‑dependent kinase inhibitor 1 (p21Waf/Cif1) expression in a dose dependent manner. Furthermore, ACN extract was able to produce a dose‑dependent increase of intracellular reactive oxygen species (ROS) in Caco‑2 cells, together with a light increase of the cell total antioxidant status. In conclusion, the present study demonstrated that a standardized berry anthocyanin rich extract inhibited proliferation of Caco‑2 cells by promoting ROS accumulation, inducing caspase‑3 activation, and upregulating the expression of p21Waf/Cif1
    corecore