6 research outputs found

    Dynamics of saturn's polar regions

    Get PDF
    132 p.En esta tesis, estudiamos la dinámica de las regiones polares de Saturno a nivel de las nubes de amoniaco desde 60º a 90º latitud mediante el análisis de imágenes multiespectrales de muy alta resolución capturadas por las cámaras del instrumento Imaging Science System (ISS) de la nave Cassini entre Octubre 2006 y Septiembre 2014 en longitudes de onda del visible entre el ultravioleta (~ 400 nm) y el infrarrojo cercano (~ 1000 nm) y nos centramos en la comparación de la dinámica entre ambas regiones polares. Con el fin de estudiar la dinámica de estas regiones, medimos el movimiento horizontal de las nubes y construimos mapas de viento zonal y meridional, junto con perfiles de viento zonal medio, desde 60º hasta el polo. Por otro lado, construimos mapas de vorticidad relativa y mapas bisimensionales de vorticidad potencial tanto de Ertel como quasi-geostrófica. Además, con el propósito de entender la naturaleza de la dinámica observada en ambas regiones polares, caracterizamos la morfología nubosa de la región polar norte de Saturno a diferentes longitudes de onda y analizamos su variación temporal. Finalmente, estudiamos varias posibles interpretaciones de la naturaleza del Hexágono, utilizando los vientos obtenidos al inicio de la tesis. Los resultados de este estudio nos muestran que la dinámica en ambas regiones polares es muy similar, alcanzando valores tanto de velocidades zonales como de vorticidades muy similares en ambos casos. Por otro lado vemos que, a pesar de observar variaciones en la apariencia del vórtice polar norte y actividad de tipo convectiva en el Hexágono, ninguna de estas estructuras muestra cambios estacionales en su dinámica

    Dynamics of saturn's polar regions

    Get PDF
    132 p.En esta tesis, estudiamos la dinámica de las regiones polares de Saturno a nivel de las nubes de amoniaco desde 60º a 90º latitud mediante el análisis de imágenes multiespectrales de muy alta resolución capturadas por las cámaras del instrumento Imaging Science System (ISS) de la nave Cassini entre Octubre 2006 y Septiembre 2014 en longitudes de onda del visible entre el ultravioleta (~ 400 nm) y el infrarrojo cercano (~ 1000 nm) y nos centramos en la comparación de la dinámica entre ambas regiones polares. Con el fin de estudiar la dinámica de estas regiones, medimos el movimiento horizontal de las nubes y construimos mapas de viento zonal y meridional, junto con perfiles de viento zonal medio, desde 60º hasta el polo. Por otro lado, construimos mapas de vorticidad relativa y mapas bisimensionales de vorticidad potencial tanto de Ertel como quasi-geostrófica. Además, con el propósito de entender la naturaleza de la dinámica observada en ambas regiones polares, caracterizamos la morfología nubosa de la región polar norte de Saturno a diferentes longitudes de onda y analizamos su variación temporal. Finalmente, estudiamos varias posibles interpretaciones de la naturaleza del Hexágono, utilizando los vientos obtenidos al inicio de la tesis. Los resultados de este estudio nos muestran que la dinámica en ambas regiones polares es muy similar, alcanzando valores tanto de velocidades zonales como de vorticidades muy similares en ambos casos. Por otro lado vemos que, a pesar de observar variaciones en la apariencia del vórtice polar norte y actividad de tipo convectiva en el Hexágono, ninguna de estas estructuras muestra cambios estacionales en su dinámica

    Cloud morphology and dynamics in Saturn’s northern polar region

    Get PDF
    We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent “puffy” clouds with scales from 10 – 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of “plume-like” activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.This work was supported by the Spanish MICIIN projects AYA2015-65041 with FEDER support, Grupos Gobierno Vasco IT -765-13, and UFI11/55 from UPV/EHU

    A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere

    Get PDF
    The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms−1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms−1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∼2–3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.This work was supported by the Spanish MICIIN projects AYA2015-65041-P (MINECO/FEDER, UE), Grupos Gobierno Vasco IT-765-13, and UFI11/55 from UPV/EHU. EGM is supported by the Serra Hunter Programme, Generalitat de Catalunya. A. Simon, K. Sayanagi and M.H. Wong were supported by a NASA Cassini Data Analysisgrant (NNX15AD33G and NNX15AD34G). We acknowledge the three orbits assigned by the Director Discretionary time from HST for this research (DD Program 14064, IP A. Sánchez-Lavega). We are very grateful to amateur astronomers contributing with their images to open databases such as PVOL (http://pvol2.ehu.eus/) and ALPO-Japan (http://alpo-j.asahikawa-med.ac.jp/)

    An enduring rapidly moving storm as a guide to Saturn’s Equatorial jet’s complex structure

    Get PDF
    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450 ms(-1) not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet ( latitudes 10 degrees N to 10 degrees S) suffers intense vertical shears reaching + 2.5 ms(-1) km(1), two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level. Palabras claveThis work is based on observations and analysis from Hubble Space Telescope (GO/DD program 14064), Cassini ISS images (NASA pds), and Calar Alto Observatory (CAHA-MPIA). A.S.-L. and UPV/EHU team are supported by the Spanish projects AYA2012-36666 and AYA2015-65041-P with FEDER support, Grupos Gobierno Vasco IT-765-13, Universidad del Pais Vasco UPV/EHU program UFI11/55, and Diputacion Foral Bizkaia (BFA). We acknowledge the contribution of Saturn images by T. Olivetti, M. Kardasis, A. Germano, A. Wesley, P. Miles, M. Delcroix, C. Go, T. Horiuchi and P. Maxon. We also acknowledge the wind model data provided by J. Friedson

    An intense narrow equatorial jet in Jupiter’s lower stratosphere observed by JWST

    Get PDF
    The atmosphere of Jupiter has east–west zonal jets that alternate as a function of latitude as tracked by cloud motions at tropospheric levels. Above and below the cold tropopause at ~100 mbar, the equatorial atmosphere is covered by hazes at levels where thermal infrared observations used to characterize the dynamics of the stratosphere lose part of their sensitivity. James Webb Space Telescope observations of Jupiter in July 2022 show these hazes in higher detail than ever before and reveal the presence of an intense (140 m s−1) equatorial jet at 100–200 mbar (70 m s−1 faster than the zonal winds at the cloud level) that is confined to ±3° of the equator and is located below stratospheric thermal oscillations that extend at least from 0.1 to 40 mbar and repeat in multiyear cycles. This suggests that the new jet is a deep part of Jupiter’s Equatorial Stratospheric Oscillation and may therefore vary in strength over time.JWST-ERS-01373, NASA/ESA Hubble Space Telescope programmes no. 16913, 15502 and 16790, PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/, Grupos Gobierno Vasco IT1742-22. I.d.; European Research Council Consolidator Grant (under the European Union’s Horizon 2020 research and innovation programme, grant agreement no. 723890), STFC PhD Studentship, NASA grants 80NSSC21K1418 and 80NSSC19K0894
    corecore