12 research outputs found

    Propagating Stress-Strain Curve Variability in Multi-Material Problems: Temperature-Dependent Material Tests to Plasticity Models to Structural Failure Predictions

    Get PDF
    This chapter presents a practical methodology for characterizing and propagating the effects of temperature-dependent material strength and failure-criteria variability to structural model predictions. The application involves a cylindrical canister (“can”) heated and pressurized to failure. Temperature dependence and material sample-to-sample stochastic variability are inferred from very limited experimental data of a few replicate uniaxial tension tests at each of seven temperatures spanning the 800°C temperature excursion experienced by the can, for each of several stainless steel alloys that make up the can. The load-displacement curves from the material tests are used to determine effective temperature-dependent stress-strain relationships in ductile-metal plasticity models used in can-level model predictions. Particularly challenging aspects of the problem are the appropriate inference, representation, and propagation of temperature dependence and material stochastic variability from just a few experimental data curves at a few temperatures (as sparse discrete realizations or samples from a random field of temperature-dependent stress-strain behavior), for multiple such materials involved in the problem. Currently unique methods are demonstrated that are relatively simple and effective

    Validation of thermal-mechanical modeling of stainless steel forgings

    Get PDF
    A constitutive model for recrystallization has been developed within the framework of an existing dislocation-based rate and temperature-dependent plasticity model. The theory has been implemented and tested in a finite element code. Material parameters were fit to data from monotonic compression tests on 304L steel for a wide range of temperatures and strain rates. The model is then validated by using the same parameter set in predictive thermal-mechanical simulations of experiments in which wedge forgings were produced at elevated temperatures. Model predictions of the final yield strengths compare well to the experimental results

    Validation of thermal-mechanical modeling of stainless steel forgings

    Get PDF
    A constitutive model for recrystallization has been developed within the framework of an existing dislocation-based rate and temperature-dependent plasticity model. The theory has been implemented and tested in a finite element code. Material parameters were fit to data from monotonic compression tests on 304L steel for a wide range of temperatures and strain rates. The model is then validated by using the same parameter set in predictive thermal-mechanical simulations of experiments in which wedge forgings were produced at elevated temperatures. Model predictions of the final yield strengths compare well to the experimental results
    corecore