
 

 
SANDIA REPORT 
 

SAND2004-4791 
Unlimited Release 
Printed September 2004 
 
 
High Fidelity Frictional Models for MEMS

E. D. Reedy, Jr., M. P. de Boer, A. D. Corwin, M. J. Starr, F. Bitsie, H. Sumali, J. M. 
Redmond, R. E. Jones, B. R. Antoun, G. Subhash, R. W. Carpick, E. E. Flater, M. D. 
Street, W. R. Ashurst  
 

 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia is a multiprogram laboratory operated by Sandia Corporation, 
a Lockheed Martin Company, for the United States Department of Energy’s 
National Nuclear Security Administration under Contract DE-AC04-94AL85000. 
 
 
 
Approved for public release; further dissemination unlimited. 
 
 
 

 
 



 

 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation. 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government, nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 

U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN  37831 
 
Telephone: (865)576-8401 
Facsimile: (865)576-5728 
E-Mail: reports@adonis.osti.gov 
Online ordering:  http://www.doe.gov/bridge  
 

 
 
Available to the public from 

U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Rd 
Springfield, VA  22161 
 
Telephone: (800)553-6847 
Facsimile: (703)605-6900 
E-Mail: orders@ntis.fedworld.gov 
Online order:  http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online  

 
 

 
 
 
 
 
 
 
 
 
 
 

 



 3 

 
 

High Fidelity Frictional Models for MEMS 
 

 

E. D. Reedy, Jr. 

Materials Mechanics Department 

 

M. P. de Boer and A. D. Corwin 

Radiation and Reliability Physics Department 

 

M. J. Starr, F. Bitsie, H. Sumali, and J. M. Redmond 

Structural Dynamics Research Department 

 

R. E. Jones 

Science-Based Materials Modeling Department  

 

B. R. Antoun 

Microsystems and Materials Mechanics Department 

 

 

Sandia National Laboratories 

P. O. Box 5800 

Albuquerque, NM 87185-0893 

 

 

 

G. Subhash 

Michigan Technological Institute 

Houghton, MI 49931 

 

 

 

R. W. Carpick, E. E. Flater, and M. D. Street 

University of Wisconsin 

Madison, WI   53706-1609 

 

 

 

W. R. Ashurst  

Auburn University 

Auburn, Alabama 36849 

 
 



 4 

SAND2004-4791 

Unlimited Release 

Printed October 2004 

 
 

Abstract  
 

 The primary goals of the present study are to: 1) determine how and why MEMS-

scale friction differs from friction on the macro-scale, and 2) to begin to develop a 

capability to perform finite element simulations of MEMS materials and components that 

accurately predicts response in the presence of adhesion and friction.  

 

 Regarding the first goal, a newly developed nanotractor actuator was used to measure 

friction between molecular monolayer-coated, polysilicon surfaces. Amontons’ law does 

indeed apply over a wide range of forces. However, at low loads, which are of relevance 

to MEMS, there is an important adhesive contribution to the normal load that cannot be 

neglected.  More importantly, we found that at short sliding distances, the concept of a 

coefficient of friction is not relevant; rather, one must invoke the notion of “pre-sliding 

tangential deflections” (PSTD). Results of a simple 2-D model suggests that PSTD is a 

cascade of small-scale slips with a roughly constant number of contacts equilibrating the 

applied normal load. 

 

 Regarding the second goal, an Adhesion Model and a Junction Model have been 

implemented in PRESTO, Sandia’s transient dynamics, finite element code to enable 

asperity-level simulations. The Junction Model includes a tangential shear traction that 

opposes the relative tangential motion of contacting surfaces. An atomic force 

microscope (AFM)-based method was used to measure nano-scale, single asperity 

friction forces as a function of normal force. This data is used to determine Junction 

Model parameters. An illustrative simulation demonstrates the use of the Junction Model 

in conjunction with a mesh generated directly from an atomic force microscope (AFM) 

image to directly predict frictional response of a sliding asperity.  

 

 Also with regards to the second goal, grid-level, homogenized models were studied. 

One would like to perform a finite element analysis of a MEMS component assuming 

nominally flat surfaces and to include the effect of roughness in such an analysis by using 

a homogenized contact and friction models. AFM measurements were made to determine 

statistical information on polysilicon surfaces with different roughnesses, and this data 

was used as input to a homogenized, multi-asperity contact model (the classical 

Greenwood and Williamson model). Extensions of the Greenwood and Williamson 

model are also discussed: one incorporates the effect of adhesion while the other modifies 

the theory so that it applies to the case of relatively few contacting asperities. 

 

 

 



 5 

1. Introduction 
 

 Microelectromechanical systems (MEMS) technology utilizes efficient fabrication 

techniques to produce cost effective components with enhanced performance and 

functionality. Allowing contact between MEMS surfaces significantly broadens the 

design space to include components with gears, guides, linear racks, pin-in-maze, etc. 

Indeed, polysilicon MEMS are being considered for demanding applications at Sandia 

that involve contacting and sliding surfaces. Examples include microengines, nanotractor 

actuators, nonvolatile memories, discriminating microswitches, and microrelays. The 

performance and reliability of such MEMS devices depend on understanding and 

controlling contact and frictional interactions between the asperities found on polysilicon 

surfaces. The primary goals of the present study are to: 1) determine how MEMS-scale 

friction differs from friction on the macro-scale, and 2) to begin to develop a capability to 

perform finite element simulations of MEMS materials and components that accurately 

predicts response in the presence of adhesion and friction. The development of predictive 

modeling capability will help enable the cost-effective development of new applications 

of polysilicon MEMS. 

 

 There are three major elements in this study. The first element is to measure friction 

between polysilicon surfaces on the MEMS-scale (i.e., micron-scale). In particular, we 

wanted to measure friction on typical self-assembled monolayer (SAM)-coated 

polysilicon surfaces since such protective and lubricating coatings are usually applied to 

the surfaces of MEMS components. We anticipated that in at least some circumstances 

MEMS-scale friction would differ from that found on the macro-scale. On the micron 

scale, there could be relatively few contacting asperities compared to the large number of 

contacting asperities that generate frictional behavior on the macro-scale. Furthermore, 

adhesion between contacting surfaces can become important on the micron-scale. To 

make these measurements, we used a newly developed nanotractor actuator as a MEMS-

scale friction tester. This device is distinguished by its ability to generate both very low 

and very high forces in both the tangential and normal directions. Increasingly sensitive 

metrology was developed during the course of this work, with an ultimate, Moiré-based 

capability to measure in-plane displacements with an accuracy of ±1 nm. This capability 

enabled us to discover an entirely new phenomenon that cannot be described by a 

classical coefficient of friction (Pre-sliding Tangential Deflections, Section 2.1.7-2.1.9). 

 

 The second major element of this study was the development of an initial capability 

to perform asperity-level finite element simulations. An Adhesion Model and a Junction 

Model were implemented in PRESTO, Sandia’s transient dynamics, finite element code. 

The Junction Model enhances the Adhesion Model with a tangential-velocity dependent, 

shear traction (junction strength) that opposes the relative tangential motion of the 

surfaces when they are in contact. An AFM-based method was used to measure nano-

scale, single asperity friction forces as a function of normal force. This data, in 

conjunction with detailed finite element analysis of the contact response of SAM-coated 

surfaces, can be used to determine Junction Model parameters. The ultimate goal is to 

perform asperity-level simulations that include all the relevant physics while using a 

mesh generated directly from an atomic force microscope (AFM) image to produce a 
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detailed description of surface topography. Such simulations would directly predict 

friction forces. This capability can also provide a more fundamental understanding of the 

effect of surface coatings on asperity contact and frictional forces and the origin and 

mechanisms of wear in contacting and sliding polysilicon surfaces.  

 

 The final element of this study is to develop homogenized, grid-scale models for 

contacting and sliding polysilicon surfaces. One would like to perform a finite element 

analysis of a component assuming nominally flat surfaces. The goal is to include the 

effect of roughness in such an analysis by using homogenized contact and friction models 

that depend on only on a few input parameters. AFM measurements were made to 

determine statistical information on the distribution of asperity summits, density of 

summits, and average radius of curvature of summits for polysilicon surfaces with 

different roughness. This type of information is used in homogenized models like the 

classical Greenwood and Williamson model (see section 4.3). Extensions of the 

Greenwood and Williamson model are also discussed: one incorporates the effect of 

adhesion while the other modifies the theory so that it applies to the case of relatively few 

contacting asperities. 

 

 Some of the work described in this report has been previously published in journal 

and conference proceedings papers. Citations for these papers are listed in Appendix A.  

 

 

2. MEMS-scale Friction  
 

2.1 Nanotractor device description and test methods and results 
 

2.1.1 Background 
 

 As recently summarized by Gao and coworkers [2.1], early studies of friction include 

the work of da Vinci (1452-1519), Amontons (1663-1706) and Coulomb (1736-1806).  

They observed empirically that the friction force between two surfaces is proportional to 

normal force, i.e.,  

 

 µ =
tangential (friction) force

normal (externally applied) load
=
FT

FN
, (2.1) 

 

and this is often called Amontons’ Law. They also noted that the friction force is 

independent of the area and they distinguished between static and dynamic coefficients of 

friction. Coulomb observed that the static friction can increase logarithmically with time, 

but that the dynamic coefficient is independent of velocity. Today, it is well known that 

these “laws” are not valid if the force or velocity is extended over a sufficiently wide 

range, or if the nominal and real contacting areas are the same (as in friction force 

microscopy or surface force apparatus measurements). However, because of its simplicity 

and because it is a surprisingly good description over a broad range of contact 
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parameters, many mechanics models of friction include only static and dynamic 

coefficients. 

  

 One goal of this work was to determine the laws of friction for MEMS surfaces.  This 

work was enabled by the use of a newly developed nanotractor actuator as a friction test 

structure.  Experimentally, we found that Amontons’ law does indeed apply over a wide 

force range. As might be expected, we also found that dynamic friction is lower than 

static friction. However, at low loads, which are of relevance to MEMS, there is an 

important adhesive contribution to the normal load that cannot be neglected. Also, we 

found that at short sliding distances, the concept of a coefficient of friction is not 

relevant; rather, one must invoke the notion of “pre-sliding tangential deflections” 

(PSTD).   In the following sections, we will discuss the high-performance characteristics 

of the nanotractor actuator, its use as a model friction test structure, advanced metrology 

methods we developed to measure both static and dynamic friction, new software for 

automated MEMS metrology, the importance of PSTD in describing the detailed 

nanotractor operation, detailed measurements of PSTD and studies of wear of polysilicon 

surfaces using the nanotractor.  

 

 

2.1.2 Device Description 

 

 Accurately measuring friction over a wide pressure and velocity range in MEMS is a 

non-trivial task. This is because conventional MEMS actuators, such as comb drives, 

develop a small force of about 10 µN. Furthermore, spring forces act in series with the 

friction force, and are difficult to calibrate. Because the friction force measured with 

conventional MEMS test structures is a difference of two small numbers, calibration 

errors can result. Also, because of the low force, the study of the coefficient of friction, 

µ , can be made only over a small force range.  

 

 A recently-developed MEMS actuator called the “nanotractor” takes advantage of 

friction to realize a high-performance bidirectional linear actuator. It delivers up to 2.5 

mN of force (250 times more than a conventional comb drive), can travel from 0 to 4 

mm/second, has a ± 100 µm range and is capable of high-precision positioning (40 nm). 

See ref. [2.2] for a detailed description of this device. The nanotractor was also designed 

with a mind towards measuring friction over a wide normal force and velocity range in 

MEMS. However, it had not yet been proven to be sensitive to friction at the beginning of 

the study. Our early work showed that the nanotractor coefficient of friction is sensitive 

to different monolayer coatings and can be used to study MEMS friction over a wide 

normal force range. Hence, the first major experimental result of the project was that the 

nanotractor serves as an improved MEMS friction test structure.  

 

 The nanotractor design principle is as follows. An electrostatically actuated plate of 

length PL  spans friction clamps of length Lc . For actuation, the plate deflects out-of-

plane with an amplitude A to induce in-plane motion, as seen in Fig. 2.1. The normal 

force that is applied to deflect the plate generates a tangential force that is approximately 

a factor of 10 higher. Signals to the leading and trailing clamps and to the actuation plate 
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must be phased to achieve motion, as shown in Fig. 2.2. One such cycle results in a 40 

nm step, which can be repeated over and over for large travel distances. With appropriate 

sequencing, forward or reverse motion of up to ± 100 µm is achieved. An SEM of the 

nanotractor is shown in Fig. 2.3. The reader will note that it is attached to Load Springs A 

and B. Load Spring A is a weak linear load spring that serves to keep the nanotractor on 

its track, while Load Spring B is a strong non-linear load spring used for friction testing. 

Also, note the displacement gauge, which will be discussed below.  

 

 A cross-sectional schematic of the nanotractor friction clamps, through the dotted line 

YY- indicated in Fig. 2.3, is shown in Fig. 2.4. The clamps are on each side of the 

actuation plate and consist of two sections. At the center of each clamp is a friction foot, 

which bears both normal and tangential loads. The clamp, the friction foot and the 

friction foot counterface are electrically grounded. Clamp electrodes adjacent to each 

friction clamp attract the clamp “wings” to generate normal force. During locomotion, a 

voltage of typically 150 V is sequentially applied to the clamps to “lock” them in place. If 

the clamps are of length Lc=200 um, this results in a normal force of ~2 mN. If the 

clamps are Lc=600 µm long, a force of ~6 mN is generated. Figure 2.4(b) shows a cross-

sectional SEM of an actual nanotractor clamp, and a close-up of the friction foot is shown 

in Fig. 2.4(c). It should be noted that the foot is not quite flat. However, the foot can and 

has been made nominally flat in a subsequent design. The friction counterfaces are not 

atomically smooth but reflect the roughness of the polysilicon surfaces, which ranges 

from 2 to 10 nm root mean square (rms), depending on the processing lot. The real 

contact areas are estimated to be several orders of magnitude below the apparent contact 

areas.  

 

 

2.1.3 Static Friction and Adhesion Force Measurement and Results 

 

 During locomotion as described in the previous section, the nanotractor works against 

a load spring. It may be attached to Load Spring A only, or it may be attached to Load 

Springs A and B. In the latter case, the effect of Load Spring A on the total load is 

insignificant. Load Spring B is useful for measuring µ  over a wide normal force range, 

while Load Spring A is useful for quantifying the effect of adhesion on friction and also 

in making dynamic friction measurements.  

 

 A static friction measurement is schematically represented in Fig. 2.5. To carry out a 

static friction test we first walk the nanotractor out against the suspension spring to some 

large distance, say 10 to 50 µm. We then clamp the leading clamp with a large voltage 

(i.e., a large normal force), and release the trailing clamp and actuation plate. This locks 

the device in position. We now step down the force in the leading clamp while recording 

the position of the nanotractor. In this configuration, applied normal forces ranging from 

1 µN ( cV =1.9 V, Lc=600 µm) to 10.6 mN ( cV =200 V, Lc=600 µm) are possible.  (These 

loads are calculated from a simple parallel plate law and the fringing field is assumed to 

be negligible). As long as the frictional force generated at the clamp is large enough to 

hold off the tangential force of the load spring, we expect the nanotractor to remain in 
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place. We expect the static friction force to be surmounted and for the nanotractor to start 

sliding when the frictional force just drops below the tangential force. 

 

  Figure 2.6 shows the results of a measurement of position as a function of normal 

force for a nanotractor coated with FOTAS, an 8-carbon chain monolayer lubricant [2.3]. 

As the data in Fig. 2.6 is from a nanotractor attached to Load Spring A with a linear in-

plane spring constant calculated to be 4.5 N/m [2.4], the position data is directly related 

to the tangential force. We observe that the nanotractor remains fixed in position until the 

normal force is sufficiently low that a jump occurs. At that point, the tangential force 

exactly balances the frictional force, and we can infer a coefficient of static friction, µs. 

From Fig. 2.6, each point just before a jump can be fit to a modified version of 

Amontons’ Law if we include a surface attraction term ( adhF ), 

 

 adhsNss FFF µµ +=  (2.2) 

 

Here, the applied normal force NF  includes not only the clamping force cF  due to 

voltage loading but also an out-of-plane restoring force from the suspension spring (kzz) 

and a gravitational mass term (mg), i.e., 

 

 FN = Fc + mg− kzz  (2.3) 

 

Thus, we can determine both the coefficient of static friction and the contribution of 

adhesion. For this coating we find a static coefficient of friction of 0.31 ± 0.01 (from the 

slope), and an adhesion force of 1nN/µm
2 

(from the non-zero y-axis intercept). More 

details on the static friction technique can be found in [2.2] and [2.5].  

 

 The friction coefficient itself depends on many factors. These include, but are not 

limited to, the type of lubricant, the velocity, the environment, the surface roughness and 

the history of the surfaces (i.e., wear). One of the strongest factors is the monolayer 

lubricant, whose structure is described in more detail in Appendix C. In Fig. 2.7, we show 

that the static friction depends strongly on the lubricant. The different monolayers in Fig. 

2.7 are an 18-carbon chain octyldecyltrichlorosilane (CH3(CH2)17SiCl3, OTS) [2.6], an 

18-carbon chain octadecene (C16H33CH=CH2, 1-octadecene) [2.7] and a branched single-

carbon chain dichlorodimethylsilane (DDMS) [2.8] which was applied in the vapor phase 

following critical point drying [2.9, 2.10]. The fourth treatment was critical point drying, 

followed by exposure to a three watt, downstream oxygen plasma, which generates a 

clean, thin oxide surface. These coatings were chosen because of the range of friction 

coefficient previously measured using a beam-on-post configuration (from 0.1 to 1.0) 

[2.7, 2.8], and because of their demonstrated compatibility with surface micromachining. 

By calculating the load-displacement characteristic of Load Spring B and knowing the 

normal load, the friction force can be determined. The data in Fig. 2.7 was taken using 

Load Spring B and therefore the static friction was tested over a wide force range. The 

data from the OTS and DDMS-coated devices is recast versus load in Fig. 2.8 and it is 

observed that the coefficient of friction does not show a strong dependence on normal 
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force, in agreement with Amontons’ Law. This is the first time this law has been shown 

to be valid over such a wide force range (factor of 30) in MEMS.  

 

 

2.1.4 Metrology 

 

 The data in Figs. 2.7 and 2.8 was taken using optical magnification of the 

displacement gauge and was limited by human vision to ~0.5 µm resolution. On the other 

hand, the data shown in Fig. 2.6 was taken at a later time after we had applied a machine-

based image analysis routine using sub-pixel resolution. This gave us approximately ±10 

nm resolution of in-plane (tangential) displacement, with a marked corresponding 

improvement in force resolution. We have also more recently developed an optical Moiré 

metrology that gives us approximately ±1 nm resolution [2.11]. In this latter case, a 

grating of 2.5 µm-pitch is directly attached to the nanotractor clamps, and its phase is 

measured to 1 part in 4000. In fact, in Fig. 2.6, both the sub-pixel and the Moiré are 

simultaneously used. This averts a problem with the Moiré - although it gives very high 

resolution, it has a phase problem in that increments of 2.5 µm cannot be distinguished. 

Hence, by using a combination of the two techniques, we maintain a metrology with ±1 

nm resolution over a ±30 µm range.      

 

 Another important metrology innovation we made in this work is to develop a 

computer-based MEMS actuation scripting language, now entitled “MEMScript” [2.12].  

As schematically represented in Fig. 2.9a, MEMScript integrates application of voltages 

(to MEMS actuators and metrology tools), image analysis, and decision making to make 

a powerful testing platform for MEMS.  It also automates data analysis  

 

 The use of MEMScript enabled us to overcome one initial limitation in the friction 

testing. Namely, in the data of Figs. 2.7 and 2.8, we reduced the voltage by 5 V intervals 

because of software limitations we had when that data was taken. As the normal force is 

proportional to the square of the clamping voltage (V
c

2) this made for a fairly large 

uncertainty in µs especially at low force levels, and this likely is the reason for the large 

scatter in the data in Fig. 2.7 and 2.8. With MEMScript, the voltage is reduced by much 

smaller intervals -- on the order of 100 mV. Using this automated data-taking method, we 

can infer that µs is independent of normal load all the way down to 1 µN. Hence, it 

appears that µs describes MEMS friction over a very wide force range (from 1 µN to 1 

mN), as long as we take the adhesive force into account. (More data is currently being 

taken on a recently processed experiment to determine how far this range extends).  

 

 As part of the project, we also constructed a high-resolution probe station to minimize 

vibration noise in our experiments, as shown in Fig. 2.9b. This probe station microscope 

was built with rigid supports and without any motorized control (unlike commercial 

probe stations).  It also incorporates long-working distance interferometry so that 

simultaneous nanometer-scale measurements are possible in three dimensions.  A distinct 

advantage of the construction is that because of our familiarity with it, we can trace and 

replace components that may be causing measurement distortions.   For example, one 
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issue with the Moiré technique we have found is that it is sensitive to focus control. If 

focus drifts, the resolution is compromised. This issue limits resolution when we are 

looking for frictional creep on the order of minutes. The problem has been traced to 

thermal expansion of the aluminum support rails in our test system and we are looking to 

actively control their temperature.  

 

 

2.1.5 Calibration of Load Springs 

 

 One important advantage of the nanotractor friction test methodology over 

conventional MEMS friction testing is that the force during the friction measurement is 

supplied only by the loaded spring, and not also by an actuator. Therefore, obtaining 

accurate tangential force information requires knowing only the spring characteristics and 

the spring displacement. In this section, we discuss methods to calibrate the load springs.  

 

 We have two basic nanotractor device types that we work with: those with linear 

suspension springs, and those with linear suspension springs plus a strong non-linear load 

cell. The linear suspension springs offer two independent methods of calibration, and are 

described first. We started by calculating the spring constant of the folded suspension 

based on the known geometry, nominal line width (2 µm), and assumed Young’s 

modulus for polysilicon (164.8 GPa). With these values we calculated a spring constant 

of 0.55 N/m. We improved this computation by using a focused ion beam (FIB) to make 

a cross section cut through the suspension spring. This allowed us to use actual values for 

line widths (typically about 1.8 µm) instead of assuming the nominal process value. With 

this measured line width value we calculated the spring constant to be 0.40 N/m. 

 

 Because of our ability to make true time dependent measurements (see dynamic 

friction section 2.1.6), we were also able to directly measure the resonant frequency of 

the nanotractor. The resonant frequency is related to both the mass, m, and the spring 

constant, k, as 

 

 ω = k /m  (2.4) 

 

We can estimate the mass of the nanotractor from the AutoCAD design files and 

assuming the density of polysilicon is 2300 kg/m
3
, i.e., the same as silicon. Since the 

largest contribution of mass is from large continuous volumes of material, the uncertainty 

due to line-width variations is relatively small. Thus, a variation in nanotractor mass 

between lots is expected to be small. We estimate the nanotractor mass to be 2.25 ± 0.15 

nanograms.  Typical resonant frequencies are about 13000 rad/sec. yielding k=0.38 ± 

0.03 N/m. Given the uncertainties, this is in good agreement with the analytic calculation.  

Because the analytical calculation of spring constant is sensitive to lot-to-lot line width 

variations, we fixed our calibration using the resonant frequency and the assumed 

nanotractor mass. As long as variation in mass between lots is small (which is what we 

expect), the relative values of the spring constant should be fairly accurate. Even if our 

mass estimate is systematically high for all devices, we will end up with only a shift in all 
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spring constants. That is, relative values of µs and µd  between different lots are can be 

compared very well if the mass of the nanotractor is consistent from lot-to-lot.  

 

 Calibration of the non-linear load cell is done solely by an analytic calculation based 

on geometry, Young’s modulus, and line width. However, the line widths are larger for 

this load cell, and thus less sensitive to process variations. If we assume that devices with 

the non-linear load cell should yield the same value of friction as a linear-suspension only 

device located on the same module, we can test the goodness of our non-linear load cell 

calibration. We find good agreement between the two load cell types, demonstrating that 

we have a good non-linear load cell calibration. 

 

 

2.1.6 True Dynamic Friction Measurement 

 

 One technique for obtaining the dynamic friction coefficient in MEMS is to use the 

data at the stopping point after a static friction event. Two methods of analysis have been 

used by other MEMS researchers. In one, the energy dissipated (the difference in the 

spring potential energy) is equated to the dynamic friction force times the distance 

traveled. In the second, a simple force balance at the point of stopping is assumed. 

Although reasonable values result, the methods are not completely satisfying because 

neither inertia nor air damping is taken into account in the analysis methods.  

 

 We also developed a method to obtain a true dynamic coefficient of friction. To do 

this, we realized an experimental configuration in which a 1-D mechanical oscillator was 

subject to friction, air damping and inertial forces. By measuring the position of the 

nanotractor at some 50 points per oscillation cycle, and by comparing the data to the 1-D 

oscillator equation, we could quantify the friction as well as the air damping. Using the 

linear Load Spring A, such data and results are shown in Fig. 2.10 for the case of zero 

applied voltage. Considering that Load Spring A also imparts a small negative normal 

force, the analysis indicates that there is friction under tensile load. In Fig. 2.11, we show 

the results of the dynamic friction force versus various applied loads. The fit to all the 

data is linear. This is the first direct observation of friction under tensile load in a MEMS 

device. Details of this technique are given in ref. [5]. Our results indicate that for the 

FOTAS film used here, µd =0.28 while µs=0.34. In both cases the adhesive force is the 

same and is 1 nN/ µm
2
. More recently, the dynamic coefficient of friction test has been 

improved so that fewer data points are required to quantitatively assess µd . This reduces 

the time to make the measurement and also reduces any possible wear processes.  

 

 

2.1.7 Indirect Observations of Pre-Sliding Tangential Deflections (PSTD) 

 

 Since the nanotractor can accurately measure static and dynamic friction coefficients 

µs and µd , we were motivated to determine if these measurements could describe the 

operational characteristics of the actuator. This work is more fully described in ref. [2.13] 

and is briefly reviewed next.  
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 We performed the following test to determine the applicability of µs and µd  to the 

nanotractor operation: 

 

(1) Clamp the leading clamp at 1.2 mN. Clamp the trailing clamp at a small voltage, 

from zero to 0.5 mN. (The trailing clamp load is no more than 40% of the leading 

clamp load). 

 

(2) Actuate the plate. 

(3) Release the leading clamp.  

(4) Repeat (1)-(3) many times and measure the average step size. 

 

 In Step (2), the leading clamp is more heavily loaded than the trailing clamp. If µs 

and µd  govern the nanotractor performance, we expect that the trailing clamp would slide 

forward in Step (2), while the leading clamp would stay in place. Also, as the trailing 

clamp load is increased in Step (1), we would expect the step size to decrease. Indeed, the 

data in Fig. 2.12 might indicate that these expectations are met, in that the step size 

decreases as the trailing clamp load increases. Knowing the plate modulus, µs and µd  (as 

measured on a nearby nanotractor that received the same processing), we can also model 

the data. The model is also indicated in Fig. 2.12, and appears to agree reasonably well 

with the data.  

 

 We note here that the step size observed in Fig. 2.12 is much smaller than the typical 

40 nm nanotractor step size. This is because the device design was changed in this 

experiment to address a modeling concern. In the standard nanotractor, the actuation 

electrode extends under the entire plate. This gives rise to a rapid transient phenomenon 

known as “pull-in”. We were concerned that inertial forces associated with pull-in might 

be important but would be difficult to model. Therefore, we changed the plate actuation 

configuration to a scheme known as “leveraged-bending” in this work. With leveraged 

bending, we could avoid the pull-in transient, and still obtain sufficient actuation 

amplitude to get motion of the device. However, the plate actuation amplitude is not as 

large as the standard design. Hence, the step size in Fig. 2.12 is a maximum of only 13 

nm compared to the typical 40 nm nanotractor step size.  

 

 Although the inertial transient is eliminated, there remains an important unknown in 

the modeling. That is, to reasonably assess the force that the plate can develop, we must 

assume that there is some compliance in the elastic hinge connection between the plate 

and the clamp. This compliance will lower the force that the plate can deliver. Although 

it is difficult to measure the hinge compliance, we can estimate it reasonably well using 

finite element models. When we used a reasonable value of the hinge compliance to 

model the data in Fig. 2.12, the model significantly over-predicted the step size at large 

trailing clamp voltages. That is, the model predicts the actuator will continue stepping at 

much larger trailing clamp voltages than were observed experimentally. To obtain the 

model/data agreement in Fig. 2.12, we required an axial compliance 50 times larger than 

our estimate. This implies that something about the model is incorrect.  

 



 14 

 The model assumes that the leading clamp is fixed. We devised a test to check this 

assumption. In the test, we now varied the leading clamp load. Because it is still 

significantly higher than the trailing clamp load, we expect no effect on the results. 

However, as seen in Fig. 2.13, the results actually do depend on the leading clamp load. 

This implies that even though the leading clamp static friction force is not surmounted, 

the leading clamp is slipping backward. The observation that there are small-scale 

deflections before the static friction event has previously been made in the tribology 

literature, and has been termed “pre-sliding tangential deflections” (PSTD) [2.14-2.17]. 

The phenomenon is usually reported for metals that are heavily deformed at their 

contacting asperity junctions. The stable tangential deflections are thought to be 

associated with increasing contact area before the static friction limit is reached [2.14]. At 

sufficiently small displacements, the number of contacting asperities governs reversible 

“elastic” tangential compliance [2.15] while a much longer “plastic” regime exists before 

the static friction limit is reached [2.16]. Such µm-scale deflections have also been 

observed for ceramic materials such as ZrO2, Al2O3 and SiC [2.17].  

 

 In the case of the nanotractor, it turns out that this pre-sliding is very important 

because the step size is so small. Better understanding PSTD thus became an important 

focus of this project. In the following section, we describe experiments to characterize 

PSTD in more detail.  

 

 

2.1.8 Direct observations of PSTD 

 

 If the circled data in Fig. 2.6 is magnified, we see direct evidence of PSTD, as shown 

in Fig. 2.14. This data is for a FOTAS monolayer.  We observe that substantial slipping 

(170 nm) occurs before the gross sliding event. For this coating we find a static 

coefficient of friction of 0.31 ± 0.01 and a dynamic coefficient of friction of 0.265 ± 

0.005. The difference between static and dynamic friction leads to the emergence of a 

few large gross slip events (of many µm) as seen in Figure 2.6, and allow a clear 

separation of the gross slip and the much smaller PSTD events. We can thus 

unambiguously attribute the fine structure seen in Figure 2.14 to PSTD.  

 

 Interestingly, the frictional characteristics depend on the monolayer used. We have 

made similar static friction measurements on an OTS-coated nanotractor. Figure 2.15(a) 

shows the complete friction test curve for one such measurement. As can be seen by 

comparing to Fig. 2.6, the OTS coating behaves very differently from the FOTAS 

coating. For this coating we find a static coefficient of friction of 0.102 ± 0.002 and a 

dynamic coefficient of friction of 0.10 ± 0.01. This small difference in µs versus µd  leads 

to the almost continuous sliding seen in Figure 2.15a, and makes the separation between 

gross sliding and PSTD less clear. However, as seen in Figure 2.15b showing a magnified 

portion of the OTS curve, we can still pick out individual PSTD events, also revealing 

PSTD on the order of 200 nm. This work is described in more detail in [2.4]. As it turns 

out much of this slipping appears to be related to time dependent motion as opposed to 

the effect as seen in the FOTAS. This is described later in this section. 
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 These direct measurements confirm that PSTD is the phenomenon responsible for the 

data in Figs. 2.12 and 2.13, giving strong evidence to the assertion that the leading clamp 

slippage plays an important role in the experimental data. Also, because the nanotractor 

step size of 10-40 nanometers is so much smaller than the characteristic PSTD lengths, it 

is clear that PSTD and not the coefficients of friction dominate the operational 

performance of the nanotractor.  

 

 We are now intensively studying the detailed characteristics of the PSTD for various 

monolayers. One long-term goal is to use these characteristics to show that we can 

predict the step size in the operational tests as shown in Figs. 2.12 and 2.13. Another 

long-term goal is to understand what phenomena are responsible for these characteristics. 

Some progress on this understanding will be described next.  

 

 We have looked for reversibility of PSTD for FOTAS-coated surfaces. We do this by 

first stepping down the clamping voltage until we observe PSTD. After slipping 

approximately 100 nm, we stop ramping down the voltage, and begin ramping up. If 

PSTD is reversible we would expect the nanotractor position to move back out as 

clamping force is reapplied. Instead, as seen in the sequence of plots in Fig. 2.16, the 

position of the nanotractor remains fixed. 

 

  Test results are more complicated for OTS-coated surfaces. Simply performing a 

static friction shows what appears as an almost a constant change of position with 

voltage. Typical data is shown in Fig. 2.17a. This is a rather surprising result, as the 

normal force goes as the square of the voltage, and thus we would expect a roughly 

parabolic shape. As seen in Fig 2.17b, position versus force is not linear. Also, the motion 

seems to be almost constant sliding, with few distinguishable position plateaus. We 

modified the static friction test to see if this could be an effect of time dependence. We 

start by walking the nanotractor out some distance against the load cell. We then step 

down the voltage by one increment (0.2 Volts), and measure the position using the Moiré 

grating (identical to the regular static friction test up to this point). We then continue to 

measure position for the same voltage at a one second interval, and do so until the 

position has reached equilibrium (defined as an average motion of less than one 

nanometer over ten seconds). Fig. 2.18a shows the result of this measurement. For each 

voltage there are many points, separated in time. Fig. 2.18b shows a magnified portion of 

the position voltage curve near 59 volts. We see that there is a large change in position (~ 

2.8 µm) for a constant voltage. In Fig. 2.19 we plot this change of position as a function 

of time. Clearly the OTS coated nanotractor exhibits large time dependence. Thus in the 

simple static friction test there is a convolution of a changing normal force with a time 

dependent motion. As the voltage was decreased at a rate of about two volts per second 

over one hundred volts (with a full test thus taking about fifty seconds), and the time 

dependence response is significant between tens and hundreds of seconds, the two time 

scales were quite similar, and thus both effects were large. Finally, we also plot the final 

equilibrium positions at each voltage as a function of voltage in Fig. 2.20a. Here we can 

observe a clear staircase pattern of position plateaus followed by position jumps. The 

overall shape of the curve is now parabolic, showing position changing as a function of 

force (voltage squared). Fig. 2.20b shows position as a function of force, and is much 
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more linear than that seen in Fig. 2.17b. Due to long term drift issues with our position 

measurements, we cannot say conclusively that we see time-independent PSTD in OTS 

before each large position jump, though we do believe we have some preliminary 

evidence of such behavior. 

 

 

2.1.9 Mechanics model for PSTD  
 

 During experimental friction studies using the nanotractor, the response of the device 

is often non-classical. This response is characterized as a non-linear force-displacement 

relationship immediately preceding the displacement instability associated with 

exceeding the frictional strength of an interface. The response, named pre-sliding 

tangential deflection (PSTD), is shown in Figure 2.21. The inset of the figure shows 

detail of the PSTD. In this particular experiment, the deflection length is approximately 

200 nm, however, it is important to note that the magnitude of the deflection is 

substantially larger than the length scale of the individual asperity contact radius. 

 

 Since the physics that govern PSTD are not obvious, a mechanics model was 

constructed to simulate the quasi-static response of the nanotractor during a friction test. 

PSTD, at least superficially, is reminiscent of the accumulated response curves produced 

by certain discrete, elastic material and joint models. Our PSTD model, in its current 

form, is a 2D model. It is based upon measured surface topography and utilizes Hertzian 

contact mechanics. This model does not include inertial effects, so it cannot realistically 

capture the sliding instability associated with large-scale slip. However, PSTD occurs 

during the stable phases of tangential displacement and that is precisely the regime in 

which the model is an accurate reflection of the physics. Note that the model can be 

easily modified to accommodate contact between coated surfaces and the existence of 

adhesion between adjacent surfaces. 

 

 Figure 2.4(c) shows the parts of the device that come into intimate contact. The 

profiles of the contacting surfaces were directly sampled from an AFM scan of a 

polysilicon surface. A portion of the polysilicon surface from which the contacting 

surfaces were sampled is shown in Figure 2.22. The full scan is 10 µm x 10 µm (1024 x 

1024 pixels) with surface roughness of 2.7 nm rms. The height data has been sampled 

every 10 nm. A 10 µm line scan was randomly selected from the original AFM image in 

the scan direction and used to model the substrate. Multiple line scans of 2 µm were 

randomly selected orthogonal to the scan direction, brought separately into point contact 

with the substrate, then linked together to form the sliding counterface. In all instances, 

the surfaces were over-sampled by linearly interpolating between data points such that 

height information is given every nanometer. 

 

 In addition to the intrinsic assumptions associated with linear elastic analyses, the 

contact analysis also employed the standard assumptions of Hertzian contact for multiple 

asperities. In a departure from actual experimental conditions, the contact analysis 

assumed silicon-on-silicon contact, whereas the experimental trials typically involved 
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contact between silicon and a SAM-coated silicon substrate. The silicon properties used 

in the simulations were Young’s modulus, E = 161 GPa and Poisson’s ratio ν = 0.23.  

 

 As a demonstration of the model’s ability to produce an effect that resembled PSTD, 

it was desired to match the material and physical parameters reflected in the experiment 

pictured in Figure 2.21. The junction model was used to determine the friction with a 

junction strength determined experimentally for silicon-on-OTS. Assuming no 

dependence on pressure, the junction strength of silicon-on-OTS was experimentally 

determined to be τ
∗
 = 195 MPa. Other than the material parameters, the model relies 

entirely on the elastic contact model and employs no fitting parameters within the 

calculations. 

 

 The sliding counterface is pressed incrementally (0.01 nm) into the substrate. At each 

step, local effective interpenetration and radii of curvature are calculated. If the two-

dimensional contact model is used, the elastic contact radius cannot be calculated 

explicitly. The contact radius is determined implicitly and from this value, the local 

contact force at each contacting location can be determined 
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For the three-dimensional contact model, the contact radius and local contact force can be 

determined explicitly 
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 The counterface is pressed into the substrate until the sum of the local contact forces 

is equivalent to a predetermined normal force. For the experiment pictured in Figure 2.21 

the initial normal force was approximately 2.2 mN/nm. Once this force level is achieved, 

the force that can be resisted in shear can be calculated directly using the current contact 

area and the assumed junction strength. 

 

Fshear = τ *A  (2. 7) 

 

 Consistent with the experiment, a non-linear tangential restoring force is applied to 

the counterface. This non-linear restoring force is developed in the device as it is 

displaced from its neutral position. A curve fit for this restoring force is provided by the 

following polynomial 

 

( ) 432

tan 0001.00435.01080.03572.45796.0 xxxxxF −+++=  (2. 8) 
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where x is given in µm and Ftan is in µN. 

 

 The model simulation begins by comparing the junction force and the device 

restoring force. If the device restoring force is greater than junction force: 

 

• The counterface is moved incrementally (1 nm) across the substrate. 

• At this new location, the vertical position of the counterface is adjusted until the 

normal force matches that before the tangential displacement. 

• The new contact area determines the updated value for the force that can be 

resisted in shear. 

• The current value of the device restoring force is calculated. 

 

If the device restoring force is less than the junction force: 

 

• The counterface is displaced upward (effectively decreasing the normal force and 

the contact area) until the restoring force exceeds the junction force. 

• The previous algorithm is applied with the reduced value of normal force. 

 

The simulation can proceed until the length of the sampled substrate is traversed. 

 

 A representative simulation is shown in Figure 2.23. The figure contains elements 

that resemble the friction experiment shown in Figure 2.21. The simulation features the 

apparent non-classical PSTD response. Over the duration of the simulation the number of 

contacting asperities varied from one to six, which is expected to be considerably fewer 

than the number achieved during the experiment. Figure 2.24 features simulations 

performed to more closely match the number of contacting asperities expected in 

experiment. In each instance the substrate was the same, as was the counterface profile; 

however, the apparent contact area was varied. This was achieved by linking different 

numbers of the same counterface to move in unison. At the largest apparent contact area, 

the initial number of contacting asperities was 76, on the order of the number expected 

during the friction experiments. The figure shows that the response curve of each 

simulation was qualitatively similar; however, PSTD events did not occur in each of the 

simulations. A conclusion drawn from this outcome is that the occurrence of PSTD is a 

complex function of spatial features coupled with the local contact mechanics. 

Unfortunately, this appears to render determination of phenomenological parameters 

difficult if not impossible. 

 

 The phenomenology of the PSTD mechanism most likely cannot be determined a 

priori through independent investigation of the two intimately contacting surfaces. The 

simulation shown in Figure 2.23 was however interrogated in an attempt to uncover 

features common to PSTD events that might be used to aid the development of a 

phenomenological model. Figures 2.25 and 2.26 illustrate some of the characteristics that 

PSTD events seem to share. In both figures the blue curve is referenced to the left axis 

and the green curve is referenced to the right axis. The range over which PSTD occurs is 

indicated by pairs of dashed lines. The figures show that during PSTD, the number of 

contacting asperities remains constant, but perhaps more interestingly, the true contact 
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area also remains essentially constant. This seems to provide further evidence for a 

randomly occurring event. During PSTD, the applied normal force is decreasing, but the 

local contact parameters (effective interference and effective curvature) are evolving in 

such a way that contact area remains the same.  

 

2.2 Wear of polysilicon surfaces 
 

 Friction and wear are major limiting factors for the development and commercial 

implementation of devices fabricated by surface micromachining techniques. The 

nanotractor enables us to study the wear of MEMS surfaces. This in-situ approach to 

measuring tribological properties of MEMS, combined with high-resolution atomic force 

microscope images of wear tracks, provides insight into the effects of processing on 

wear. In particular, surface monolayer coatings have a significant positive effect, while 

surface texturing does not strongly affect performance [2.18].  

 

 The work performed thus far indicates that the nanotractor is a promising vehicle for 

in-situ wear studies on MEMS devices. Although more experiments are needed and 

further development of the testing methodology is required, several conclusions can be 

made. First, the nanotractor device fails via interfacial seizure due to wear processes at 

the sliding interfaces under well-characterized loading conditions. Although it will be 

necessary to develop more sensitive in-situ tests, this is a necessary observation to justify 

the further development of nanotractor wear tests. Second, the tests were conducted under 

44 kPa apparent pressure, and noticeable wear of the polysilicon surface was observed. 

With this device, it should be possible to study the onset of wear as a function of lighter 

loading conditions. Third, a monolayer lubricant of FOTAS significantly enhances the 

wear resistance of MEMS surfaces. Fourth, surface roughness does not strongly affect 

wear properties, based on the limited number of measurements so far. Fifth, as long as 

only a limited amount of friction testing is conducted, we can directly measure the 

friction coefficient as a function of wear. It is possible to measure friction for monolayer-

coated surfaces, since not much change with number of friction tests cycles is observed. 

For the oxide-coated surfaces, friction tests should be performed at lower loads. Sixth, the 

friction coefficient can vary substantially, long before failure and before device 

performance (such as travel distance) is altered. Finally, AFM can be applied to study 

surface modification without damaging or even contacting the nanotractor device, 

because of the large travel distances (>20 µm) that the nanotractor undergoes during a 

wear test. Therefore, in future studies it should be possible to conduct wear and AFM 

tests sequentially on the same device to follow the evolving topography. These results are 

important for the understanding of MEMS device reliability. We have shown that this 

unique, in-situ method is highly revealing and holds promise for developing a more 

quantitative and predictive understanding of MEMS device reliability. See [2.18] for 

more details.  

 

 A wear study subsequent to that reported on in [2.18] was also conducted. It 

addressed some of the limitations from the earlier study. In particular, we were able to 

write test programs that showed a graceful degradation of the nanotractor, as opposed to 
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the abrupt degradation seen in the previous work. A manuscript describing this newer 

testing procedure and the results has been drafted [2.19]. 

 

 

2.3 Impact of nanotractor and MEMScript on Sandia National 
Laboratories’ applications 
 

 The nanotractor has been successfully demonstrated in two of Sandia’s prototype 

devices. In one application, it was used by Mark Polosky (Dept. 2614) to enable a 

countermeshing gear mechanism. In a second application, Daryl Dagel (Dept. 1769) has 

made use of the high force and large displacement characteristics of the nanotractor in an 

optical application being jointly developed with Lockheed-Martin Company. In that 

application, 100,000 cycles are required and nanotractor wear is an issue that requires 

attention.  

 

 MEMScript was built on a very general conceptual platform integrating actuation, 

interferometry, machine vision and easy programming.  It is rapidly becoming the 

standard test software at Sandia for a wide range of polysilicon surface micromachined 

applications.  These include, but are not limited to, scratch-drive actuators  (the OPAL 

project), Smicroengines (used as process monitors in the light lab and the fab), and in the 

AIM lab for interferometry and adhesion testing.  We are considering marketing 

MEMScript software. 
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Fig. 2.1 Nanotractor schematic with signals 

applied to achieve motion to the right. The plate 

electrode is segmented by grounded standoffs 

that prevent electrical shorting of the plate to 

the plate electrode and establish amplitude A.   

Fig. 2.2 Timing diagram for Fig. 2.1 

(one cycle). Voltage ranges indicate 

levels over which device will operate.   

Fig. 2.3  SEM image of the nanotractor (Lc=200 µµµµm). 
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Fig. 2.4(a) A schematic cross-section at YY’ as indicated in Fig. 2.3 showing the friction clamp 

design and actuation plate. A dual clamp design is used for electromechanical stability and the P4 

layer significantly enhances the clamp bending stiffness. The actuation plate, friction clamp, 

friction stop and its opposing counterface are electrically grounded. Actuation is achieved via the 

plate and clamp electrodes. The four clamp electrodes shown are at the same potential. Grounded 

stops (as shown in Fig. 2.1) prevent shorting of the plate to the plate electrode. The width direction 

in (a) is compressed 2 times relative to the height direction. The circled area is shown in (b).   

 

actuation plate 
frictional 

stop 

25 µm wf=2 µm 50 µm 

1.5 µm 

0.5 µm 

plate  

electrode 

clamp  

electrode 

P1 
P2 

P3 

P4 

friction clamp 

frictional counter stop 

P0 

6.6 µm 

wc  wp  

Fig. 2.4(b) SEM cross-section of right side of clamp before etch release. The circled area is shown in (c).  

Fig. 2.4(c) SEM close-up of friction foot and the lower P0 counterface before etch release. 
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Walk out nanotractor against load cell 

Apply large normal force (voltage) 

Step down normal force (voltage)  and 
record position 

Fig. 2.5. Schematic diagram showing a nanotractor static friction test. 

Figure 2.6.  A static friction test from a FOTAS coated nanotractor.  (data inside the dotted circle is 

magnified in Fig. 2.14) 
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Fig. 2.8 The data of Fig. 2.7 is recast versus normal force. The static coefficients of friction are 

independent of normal load over 1.5 orders of magnitude, suggesting that Amontons’ law is valid 

for MEMS surfaces at sufficiently high loads. 
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Fig. 2.7 Static coefficients of friction measured using Load Spring B as the actuator. Note the 

logarithmic scale for the µµµµs axis. For each coating, the data is from four devices on two chips using 

both cL =600 µµµµm and cL =200 µµµµm. Measurements from an individual device are grouped together, 

and moving to the right within a group corresponds to decreasing normal load. For the O2 plasma, 

data from three chips are shown because there are only one or two slip events per device. 
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MEMScript An integrated vision and actuation 
automation tool for MEMS 

Set 
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Intelligent Actuation:  Combine real time in-plane, interferometric, and 
stroboscopic vision capabilities with full scripting power to allow actuation to 
respond to vision data in real time 
Flexibility: Works with a variety of National Instruments image capture and 
digital to analog boards, as well as GPIB and serial devices.  Interface to 
external programs via DDE (i.e. LabView) 
Simplicity: Presents simple user interface to allow use without knowing 
scripting language 
Power:  Full featured scripting engine written in C includes full branching 
(make decisions on the fly), arithmetic function evaluation (calculate on the 
fly), graphing (display on the fly), file output (save data and images for further 
analysis/presentation) 

In use for friction and wear 
study with nanotractor 
actuator, OPAL project using 
scratch-drive, light labs and fab 

for  µ µ µ µ-engine, and AIM lab for 
interferometry and adhesion 

testing. 

Fig. 2.9a Schematic representation of MEMScript software.  
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Fig. 2.9b High resolution probe station developed for resolving 1 nanometer in-plane motion 

detection for MEMS.   
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Fig. 2.11 Dynamic friction force versus applied load. 
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Fig. 2.10 Dynamic friction data describing the in-plane tractor tip motion after slip. 
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Fig.2.12 Best model fit to the data. A very large value of axial compliance 

γF= 61052 −• µµµµN/µµµµm is needed to fit the endpoint at large trailing clamp load.   
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Fig. 2.13 Slip/cycle for a PF8TAS-coated inchworm for three different leading 

clamp loads. Plate actuator voltage VP = 105 V, cycle frequency is 400Hz.  
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Fig. 2.14 A magnified portion (the dotted circle of Fig. 2.6) from a FOTAS-coated nanotractor. 
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Fig. 2.15(a) A static friction test from an OTS coated nanotractor, (b) A magnified portion of a static 

friction test from an OTS coated nanotractor. 
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Fig. 2.17 Static friction test performed on with OTS coated nanotractor. a) Position as a function of 

voltage. Note the almost linear change in position as a function of voltage (voltage ramped down at 

2 Volts/sec)  b) Position as a function of normal force.   
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Fig. 2.16 PSTD reversibility test.  a) After partially traversing a PSTD event, ramp up the 

voltage showing that the slip tangential deflection is not recovered.  b) Ramp voltage down 

(black) and then back up again (red) with no change in position within measurement resolution. 
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Fig. 2.19 Time dependence of data from Fig. 2.16 at 59 vo
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Fig. 2.21. During a friction experiment, the normal clamping force is measured as a function of the 

location of the contacting counterface. The inset shows an instance of pre-sliding tangential deflection 

(PSTD), wherein the counterface displaces in a quasi-static manner over a distance significantly 

larger than an individual asperity contact radius. 

 

Fig. 2.20 Equilibrium position static friction test data.  a) Position as a function of voltage.  b) 

Tangential force as a function of normal force. 
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Fig. 2.22. Height profile of the AFM scan from which the contacting nanotractor surfaces were 

sampled. The image is a 2.5 µµµµm x 2.5 µµµµm sample from a 10 µµµµm x 10 µµµµm scan with 2.7 nm rms 

roughness. 

 
 

Fig. 2.23. A model simulation apparently produces an effect that looks like PSTD. The inset shows 

details of the simulated PSTD that have a deflection length scale off the same as order as that seen 

experimentally. 
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Fig. 2.24. A model simulation was performed in which the effective contact area was increased while 

applying the same initial normal and tangential forces. The appearance of PSTD in only one of the 

cases implies a complex dependence of the effect on surface topography and local contact mechanics. 

 

 
 

Fig. 2.25. During a simulated PSTD event, the contact area remains constant. The two significant 

PSTD events from this simulation are indicated by the dashed lines. 
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Fig. 2.26. During a simulated PSTD event, the number of contacts remains constant. The two 

significant PSTD events from this simulation are indicated by the dashed lines. 
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3. Asperity-level finite element simulations 
  

  

3.1. Background 
 

 We have seen in Section 2 that the nanotractor can be used to make detailed 

friction measurements of MEMS surfaces.  One of the major goals of this project is to 

develop a high fidelity, mechanics-based finite element simulation capability that can be 

used to establish a fundamental understanding of the experimental data.  In this section, 

we describe an initial capability to perform asperity-level finite element simulations. 

These simulations include asperity-level adhesional and frictional surface interactions 

and use a mesh generated directly from an atomic force microscope (AFM) image to 

produce a detailed description of surface topography. This capability enables a thorough 

investigation of asperity interactions.  For example, one can investigate to what extent 

small-scale features in the relatively complex polysilicon topography influence frictional 

response. This capability can also provide a more fundamental understanding of the 

effect of surface coatings on asperity contact and frictional forces and the origin and 

mechanisms of wear in contacting and sliding polysilicon surfaces.  Such detailed 

information is also useful when formulating grid-scale, homogenized models that do not 

explicitly model individual asperities. Key aspects of this asperity-level modeling 

capability are discussed below and an illustrative example demonstrating its application 

is presented. 

 

3.2. Surface interaction models  
 

Two surface interaction models have been implemented into Sandia’s three-

dimensional, transient dynamics, PRESTO finite element code [3.1] to enable the 

asperity-level calculations. The Adhesion Model combines frictionless contact with an 

adhesive traction that scales with the relative normal distance between opposing surfaces. 

The Junction Model enhances the adhesion model with a velocity-dependent shear 

traction (junction strength) that opposes the relative tangential motion of the surface 

when it is in contact. This latter model was motivated by previously published work that 

suggests that AFM friction test data can be simulated with a pressure and velocity 

independent shear junction strength [3.2, 3.3].  Contact capabilities in PRESTO are 

provided by ACME (Algorithms for Contact in a Multiphysics Environment [3.4]), and 

the Adhesion and Junction Models were implemented via ACME. Figure 3.1 presents 

results that demonstrate PRESTO’s ability to accurately simulate contact and the effect of 

adhesion. These results are for a cylindrical polysilicon asperity with a 27-nm spherical 

tip contacting the flat surface of a cylindrical polysilicon substrate (Fig. 3.2). The 

polysilicon is treated as a linear elastic material with a Young’s modulus, E, of 161 GPa 

and a Poisson’s ratio, ν, of 0.23. The adhesion vs. separation model is based upon a 

Lennard-Jones potential and corresponds to the adhesive force/unit area between two 

half-spaces [3.5]. Also note that in the simulations the tip is pushed at a sufficiently slow 

velocity (~ 1-m/s) to produce a quasi-static repsonse. Figure 3.1 shows that when there is 

no adhesion (the work of adhesion, W, equals 0.00 J/m
2
) the PRESTO analysis accurately 

reproduces the Hertz solution for an elastic silicon sphere contacting an elastic silicon 
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plane. When there is adhesion (W= 0.05 J/m
2
), the calculated results are in excellent 

agreement with the DMT-like limit solution as determined by Maugis for a Dugdale 

adhesive zone model [3.5]. This solution applies to hard solids with small radii of 

curvature and low work of adhesion----as is the case of the problem analyzed (Fig. 3.2). 

According to this theory, the contact stress distribution is Hertzian, but the integral of the 

stress distribution equals P+2πWR, where P is the applied load and R is the radius of 

curvature of the asperity.    

 

3.3. Determining parameters for surface interaction models 
 

One of the key issues in the modeling effort is to define the values of the Junction 

Model parameters (W and the junction strength, τ*), since these values specify the 

magnitude of asperity-level adhesional and frictional surface interactions. One potentially 

promising approach for deducing these parameter values is to use AFM friction and 

adhesion test data. In an AFM friction test, lateral force (friction) is measured as a 

function of applied normal force as the AFM tip scans along a line on the surface. The 

values of W and τ* are not measured directly in this test, but must then be inferred from a 

contact mechanics analysis. To illustrate this approach, consider the case of AFM friction 

test data for a silicon tip sliding over an OTS-SAM coated silicon substrate.  The contact 

problem of interest is that of a 25-35 nm radius, silicon asperity (the AFM tip, whose 

radius can be determined independently) contacting a roughly 2-nm thick, SAM-coated 

substrate. Both the tip and the substrate are linear elastic and have the same Young’s 

modulus, E, of 161 GPa, and the same Poisson’s ration, ν, of 0.23. Simple, analytic 

solutions (e.g., Dugdale-DMT) might be applicable if the relatively compliant, but thin 

SAM coating could be ignored. For this reason, a series of preliminary calculations were 

performed to evaluate the effect of a SAM coating. These calculations ignore adhesion 

and use the same geometry as that shown in Fig. 3.2. The OTS-SAM coating is assumed 

to be an isotropic, linear-elastic material (undoubtedly an oversimplification), and a range 

of polymer-like Young’s modulus, Ec, is considered (coating Poisson’s ratio, νc, is fixed 

at 0.4). Figure 3.3 indicates that the SAM coating has a significant effect on contact; it 

reduces contact pressure and increases contact area. Consequently, any finite element 

contact analysis must explicitly include the relatively compliant SAM coating. The effect 

of adhesion was considered next. Results for 3 adhesion levels are plotted in Fig. 3.4 for a 

2-nm thick SAM coating (Ec = 8 GPa, νc = 0.4). Interestingly, even when a relatively 

compliant coating is present, the results are DMT-like: using an effective load P + 2πRW 

collapses the results (Fig. 3.5). This greatly simplifies the required analysis since one 

does not need to perform separate calculations for each adhesion level of interest; 

adhesion can be taken into account simply through the effective load.  

 

What is required is a relationship between friction force and effective load in terms of 

the two free parameters, W and τ*.  Note, however, that friction force is equal to the 

product of contact area and τ*, which is assumed to be a constant for a given pair of 

surfaces.  Consequently, the finite element contact analysis only needs to determine the 

relationship between contact area and applied load. This must be done for each 

combination of SAM and asperity material properties (e.g., various Ec) and geometric 

parameters (e.g., R and SAM layer thickness, hc) of interest. Figure 3.6 shows the 
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calculated relationship for one set of such properties: a 27-nm radius of curvature silicon 

tip indenting a 2-nm thick SAM coating on a silicon substrate with Ec = 8 GPa, νc = 0.4. 

For the range of applied loads relevant to our AFM friction tests, the contact area vs. 

applied load relationship can be fit quite well by a simple power-law relation. Using this 

fact, and based upon nondimensional considerations, the following relationship was 

determined 

 

 Friction Force = τ *π
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b

 (3.1) 

where E = E /(1−ν 2) and E c = E c /(1−ν c

2
). The parameters A and b have been 

determined from a series of finite element calculations, and depend on elastic and 

geometric properties. See Appendix B for further details. Table 3.1 lists current estimated 

values for these parameters. Note that these parameters are thought to be applicable when 

hc/R values between 0.057 and 0.074, for P /E chc
2 values between 0.02 and about 2, and 

for ν = 0.23 and νc = 0.4. 

 

 

Table 3.1. Parameters used in Friction Force vs. Applied Load relationship (Eq. 3.1) 

 

 

Ec/E A b 

0.014 0.65 -0.11 

0.028 0.66 -0.11 

0.056 0.66 -0.09 

0.112 0.73 -0.08 

 

 

Figure 3.7 demonstrates the use of the Friction Force vs. Applied Load relationship 

(Eq. 3.1) to determine the τ* and W values corresponding to two different sets of AFM 

friction test data. As an aside, the plotted experimental results are for two nominally 

identical tests, indicating current issues with day-to-day variability in AFM-friction test 

data (see Appendix C for more details on the AFM-testing along with preliminary test 

results). The analytic relation closely matches the experimental data for the indicated τ* 

and W values. These fits assume Ec = 8 GPa.  It must be emphasized that the fits assume 

that the values of R, hc, E, ν, Ec, and νc are independently known. There are any number 

of equally good fits when the ratio τ*/Ec
2/3

 is held fixed (follows from Eq. 3.1 and the fact 

that A and b are a weak function of E/Ec for the range of values considered, Table 3.1). 

This presents some difficulty since Ec, and νc are difficult to measure. There are some 

potential approaches for experimentally determining Ec, but these are difficult 

measurements [3.3]. One may also be able to make estimates of SAM properties from the 

results of molecular dynamic simulations of SAMs [3.6].  
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3.4. Generating finite element meshes from AFM images 
 

One further aspect of the asperity-level modeling effort is the development of an 

automated method for generating a finite element mesh directly from an AFM image. A 

finite element mesh script was developed which takes surface height information in the 

form of a matrix and creates an interpolated sheet body that can be operated on in a finite 

element meshing package such as CUBIT. The script accepts user arguments that define 

the number of pixels in each planar direction and the physical size of the pixelized scan in 

each planar direction. After assigning each pixel a physical location, a spline is fit to each 

line of pixels in one coordinate direction. Then a spline is fit to each line of pixels in the 

orthogonal direction. The intersecting mesh of spline fit lines is used to generate an 

interpolated two-dimensional representation of the AFM scan height profile. 

 

3.5. Illustrative example 
 

 A demonstration of the capabilities of PRESTO and the Junction Model will be 

described in this section. PRESTO was used to predict the friction force generated when 

an asperity slides over a portion of a surface whose topography was defined by an AFM 

image. Comparisons are also made for the cases of simulated silicon-on-silicon contact 

and silicon-on-SAM. In this instance, the SAM layer is a CH3-thiol with an 

experimentally calculated junction strength of τ*≈ 194 MPa, elastic modulus E = 8 GPa, 

and Poisson’s ratio ν = 0.4. 

 

 In order to capture Hertzian contact mechanics and still have a finite element problem 

that was tenable, only a portion of a full 10 µm x 10 µm AFM scan was sampled for use 

as the substrate over which a spherical asperity is displaced. A 100 nm x 100 nm region 

of the full image was sampled and the surface topography was interpolated within 

CUBIT using the script described in the previous section. From this region, a 35 nm x 

100 nm track was sampled to serve as a representative portion of the image. A spherical 

asperity with radius of curvature of 50 nm was created. From this sphere a die was 

removed such that its width was completely contained within the width of the track. A 

representative mesh of this geometry is shown in Fig. 3.8. The figure shows the mesh 

employed in analysis. The mesh consists of approximately 250,000 elements and the 

elements in the contacting surfaces are no larger than 0.5 nm x 0.5 nm in the plane of 

contact. The die was pressed into the substrate with a force of 500 nN and then slide 

tangentially across the surface at a rate of approximately 7.5 m/s. 

 

 Because a transient dynamics code was employed in the analysis, silent boundary 

conditions were employed to allow stress waves to pass freely through the free surfaces. 

The substrate and asperity were therefore essentially infinite bodies and the impact of 

boundaries in the near vicinity of the contacting surfaces was minimized. Figure 3.9 

shows the results of a set of simulations using the geometry pictured in Figure 3.8. The 

figure shows how the contact radius evolves as a function of the position of the die as it 

slides over the substrate. It is clear that local features of the substrate will strongly dictate 

the calculated contact radius. The information given in this figure for the SAM-coated 

substrate was calculated using values for shear force as a function of position that were 
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provided directly from the finite element simulation. The contact radius value was 

calculated directly using the junction strength of silicon-on-SAM. The contact radius for 

silicon-on-silicon simulation was approximated through a discrete interrogation of the 

local element contact forces. It is interesting to note that the much compliant SAM-layer 

yields a substantially higher contact radius as would be expected 
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Fig. 3.1. PRESTO finite element analysis (FEA) solutions compared with analytic Hertz (no 

adhesion) and DMT (W=0.05 J/m
2
) solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.2. Example of the finite element mesh used in PRESTO simulations of a cylindrical asperity 

with a truncated spherical tip contacting the flat surface of a cylindrical substrate. 
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Fig. 3.3. Calculated contact area as a function of the SAM’s Young’s modulus for a 27-nm radius of 

curvature silicon tip indenting a 2-nm thick SAM coating on a silicon substrate (ννννc = 0.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.4. Calculated contact area as a function of the work of adhesion, W, for a 27-nm radius of 

curvature silicon tip indenting a 2-nm thick SAM-coated silicon substrate (Ec = 8 GPa, ννννc = 0.4). 
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Fig. 3.5. Calculated contact area as a function of the DMT-like effective load for a 27-nm radius of 

curvature silicon tip indenting a 2-nm thick SAM coating on a silicon substrate (Ec = 8 GPa, ννννc = 0.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.6. Power-law fit of the calculated contact area vs. effective compressive force for a 27-nm 

radius of curvature silicon tip indenting a 2-nm thick SAM coating on a silicon substrate (Ec = 8 GPa, 

ννννc = 0.4). 
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Fig. 3.7. Values of work of adhesion, W, and shear junction strength, ττττ*, parameters in the analytic 

relationship for Friction vs. Normal Force that produce a good fit to AFM friction test data (Ec = 8 

GPa, ννννc = 0.4). 

 

 
 
Fig. 3.8. Mesh of a 35 nm x 100 nm track sampled from an AFM scan of a polysilicon surface. The 

substrate is covered with a CH3-thiol SAM layer 2 nm in thickness. A spherical asperity with 50 nm 

radius of curvature is pressed into the substrate and displaced along its length. 
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Fig. 3.9. The friction force calculated using the junction model for the geometry pictured in Figure 

3.8 is shown as a function of sliding location.  
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4. Grid-scale Friction Model for Polysilicon 
MEMS 

 

4.1 Background  
 
 Section 3 described our efforts to perform detailed asperity-level simulations in which 

asperities are modeled explicitly. When analyzing MEMS components, however, one 

would like to mesh nominally flat surfaces and then include the effect of roughness by 

using homogenized contact and friction models that depend only on a few input 

parameters. This is the motivation for the work presented in the present section. This 

section begins with a description of a detailed AFM characterization of polysilicon 

surface topography for surfaces with different nominal roughness. This data is then used 

to determine statistical information for input into the classical Greenwood and 

Williamson model for multi-asperity contacts. Extensions of the Greenwood and 

Williamson model are also discussed: one incorporates the effect of adhesion while the 

other modifies the theory so that it applies to the case of relatively few contacting 

asperities. 

 

 

4.2 Polysilicon Surface Roughness 
 

 Surface roughness is a critical parameter that affects the frictional and wear properties 

of bulk materials [4.1]. Because of the planar deposition technology, horizontal (i.e. as-

deposited or annealed) polysilicon surfaces are quite smooth, with typical root mean 

square (RMS) surface roughness values of just a few nanometers. If surface textures are 

properly tailored and pressures are well controlled, it is conceivable that deformations 

will be largely elastic, and hence wear can be minimized. On the other hand, polysilicon 

asperities are highly curved, and so it may be difficult to avoid locally exceeding the 

hardness of polysilicon, 11 GPa [4.2]. Although surface roughness in MEMS has been 

discussed to some extent [4.3], until our work, no other studies have integrated detailed 

topography measurements of MEMS surfaces to model true pressures. 

 

 To address this, MEMS surfaces were studied with AFM to evaluate their geometry 

in detail. The surface topography was measured using a Digital Instruments Nanoscope 

IV AFM with a silicon nitride AFM cantilever. The tip shape was tested before and after 

the measurements using in-situ tip imaging samples to ensure that it started and remained 

a sharp, single protrusion so as to minimize the effect of convolution of tip shape [4.4]. 

Numerous tips with blunt (>40 nm curvature radius), multiple, or asymmetric 

terminations were rejected. 

 

 We used existing MEMS cantilever structures as samples to study the surface 

roughness. Such samples consist of the same surfaces that are used in MEMS test 

structure friction studies, but could be fabricated in a much shorter time. Those surfaces 

are the top of a lower lying ground plane polysilicon, and the bottom of an upper 

polysilicon cantilever. The cantilevers were fabricated according to a three mask level 
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process. Texturing of the lower layer of polysilicon (300 nm thickness, called “Poly0”) 

was accomplished by thermal oxidation in dry O2 at 900  °C for increasing times. Table 

 4.1 indicates the times and the RMS roughness as measured by several 10x10 µm
2
 AFM 

images of the samples. The texturing occurs because the grains are randomly oriented, 

and dry oxidation in the linear regime proceeds at different rates on different orientations 

of silicon [4.5]. Also, the grain boundaries are enhanced at increasing oxidation times, 

giving rise to grooves. These do not contribute significantly to the desired texturing 

because they comprise a small percentage of the surface area, and extend below the 

surface. A wet chemical etching process whereby the oxide is removed follows the 

oxidation step, exposing the textured surfaces. 

 

 Standard deposition, lithography and etch techniques were used to fabricate the 

cantilevers, to form the upper layer of polysilicon (2500 nm thickness, called “Poly 1/2”). 

They are supported on one side by a step-up support post, formed by filling a hole etched 

into the sacrificial oxide layer. A critical step is the release and drying of the cantilevers. 

We used two procedures: (1) supercritical carbon dioxide drying [4.6], and (2) a solvent-

based coating in which a self-assembled monolayer of perfluorodecyltrichlorosilane 

(FDTS, C8F17C2H4SiCl3) is applied, similar to ref. [4.7]. Surfaces produced using both 

types of finishing steps were examined and unless otherwise noted, results did not exhibit 

any significant dependence on the choice of release and drying procedure. 

 

 For measurements of Poly0 regions, the AFM tip was positioned over an exposed 

Poly0 region. Beams were then peeled off using an adhesive and placed facing underside 

up on an AFM sample holder to examine the underside of the Poly1/2 cantilever beams.   

Figs. 4.1 and 4.2 are topographic AFM images of the Poly0 layer for the two extreme 

cases of no oxidation and 400 minutes of oxidation respectively. Dark/bright correspond 

to low/high regions. The grain boundaries are clearly seen and reveal that the grains 

typically range in size from 50-500 nm laterally, with irregular boundaries. The oxidized 

sample exhibits deeper, wider grain boundaries as expected. The tops of grains have 

some intrinsic roughness, but overall roughness results from height differences between 

the grains, particularly for the oxidized sample. 

  

 The height range of the tops of the grains is approximately 30 nm for the unoxidized 

sample and 80 nm for the oxidized sample. To characterize this more generally, the RMS 

roughness Rq was measured at different length scales for all 

four oxidation times (Table 4.1). For a 10x10  µm
2
 area, Rq 

depends nearly linearly on oxidation time, indicating the 

roughening effect of the oxidation and etching process. 

However, at the 100x100 nm
2
 scale with roughness measured 

on top of an individual grain, Rq had no dependence on 

oxidation time, being ~0.8 nm. The highest grains will 

obviously be the ones that first come into contact with the 

countersurface, although if wear occurs, lower grains may 

eventually come into contact. Therefore, we measured the 

intragranular roughness on both high and low grains to check 

for any changes as a function of grain height. Three of the 

Table 4.1 

 

Oxidation 

Time 

(min) 

RMS 

Roughness 

(nm) 

0 3.06 

20 5.11 

136 6.72 

400 11.5 
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highest and lowest grains were selected from the sample oxidized for 400 minutes to 

examine the extreme case. For each grain a series of images was acquired and roughness 

measurements carried out. The roughness was measured to be 0.75±0.12 nm and 

0.87±0.39 nm for the highest and lowest grains respectively, where the error is given by 

the standard deviation of the measurements. Therefore, within error, the roughness on 

high and low grains is indistinguishable. The Poly1/2 layers were observed to have 

substantially different topographic features. Figs. 4.3 and 4.4 are topographic AFM 

images of the Poly1/2 underside, again for the two extreme cases of no oxidation and 400 

minutes of oxidation respectively. The topography consists of two predominant features: 

small grains that are apparently the intrinsic grain structure of the Poly1/2, and larger pits 

that appear to be a result of a conformal growth process. The pronounced nature of these 

latter features was not expected. The Poly0 grain roughness has been partially transferred 

through the sacrificial oxide, upon which the Poly1/2 layer was grown. Consistent with 

this, the pits in the Poly1/2 layer become larger with increasing oxidation time as seen by 

comparing Figs. 4.3 and 4.4. As well, the pits are seen to have a distribution that is 

similar in nature to the grain height distribution seen in Figs. 4.1 and 4.2 respectively. 

The pits in the Poly1/2 surface are more rounded than the grains of the Poly0 surface, 

which is a natural consequence of the expected reduction in feature definition that would 

occur when the oxide is grown on the Poly0. The underside of the cantilevers is therefore 

quasi-conformal with the Poly0, with these quasi-conformal surfaces separated by a 2-µm 

gap. 

 

4.3 Discrete GW model and application to AFM images  
 

 In treating contacting rough surfaces in a computationally efficient manner, the 

classical method described by Greenwood and Williamson  [4.8] is quite attractive as a 

homogenization technique.  Essentially, if there are enough contact asperities to define an 

asperity density and the population is spatially sparse enough to act independently then 

their response to normal displacement can be given by a GW model. Specifically, the 

individual asperity’s force response, f, can be integrated over the contacting sub-

population of the asperity height distribution, φ(h), to obtain a normal pressure value,  

p(d), over a nominal area, A: 

 p(d) =
1

A
f (h − d)φ(h)dh∫ , (4.1) 

as a function of the nominal gap, d, or approach of the two surfaces (Fig. 4.5). In a 

similar manner, true area of contact for the ensemble can be calculated from the response 

of a single asperity, a(d), to contact with an approaching surface, for example. If the 

assumptions embedded in the model are valid then all that is required to simulate the 

contact of rough surfaces on the MEMS component is a representative characterization of 

the distribution, φ(h), and the individual asperity response. No other spatial information is 

required.  

 

 Besides the basic difficulty of identifying “asperities” from surface data, the 

assumption that the distribution is populous enough to be continuous breaks down in 

typical MEMS devices, where the (nominal) area of contact and/or nominal pressure are 

small. This can also happen if there are a few tall asperities that dominate contact and 
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show up as “outliers” in the measured asperity height distribution. In these cases, the 

discrete nature of the contacting population is apparent and the preceding expression 

becomes: 

 p(d) =
1

A
f (hi − d)

i

∑ . (4.2) 

 

 Figure 4.6 illustrates that as the sample population of a Gaussian φ(h) grows, the 

response, in this case the (non-dimensional) real area of contact versus the (non-

dimensional) pressure, tends to the response of a continuous distribution of asperities (the 

uppermost curve) and away from the response of a single asperity (the lowest curve).  

Here it takes only takes tens to hundreds of contacting asperities for the discrete results to 

start to match the continuous one.  This figure also supports the common belief that the 

GW model is consistent with Coulomb’s law.  Specifically, the nearly linear relationship 

between real contact area, Ac, and pressure shown in the figure, with the assumption that 

each asperity can only support a shear force proportional to its contact area, leads to the 

simple relationship: 

 ppkAc µτ == )( , (4.3) 

known as Coulomb’s law. Here the asperities are assumed to behave in a Hertzian 

manner: 

 

 

 f =
4

3
E Rd

3

2    and    a = πRd , (4.4) 

where E is an elastic modulus and the radius of curvature,  R,  is assumed to be the same 

for all the asperities. Note that in the figures the contact area is non-dimensionalized by 

NRσπ  and that the normal force is non-dimensionalized by NRE 2/3

3

4
σ , where N is 

the total number of asperities in the nominal contact area and σ is a characteristic length 

for the distribution φ(h), i.e., the standard deviation. 

 

 We have applied the GW model to the MEMS surface topographies presented in 

Section 4.1 as an example of applying the most basic assumptions of rough contact. The 

surfaces shown in Figs. 4.1-4.4 are the two faces that will come into contact when the 

cantilever makes contact with the surface underneath, such as in an adhesion or friction 

test. To carry out this analysis we follow the treatment of McCool [4.9], who showed 

how to convert surface topographic measurements to appropriate input parameters for the 

GW model (as modified by Nayak [4.10]). 

 

 As stated above, the GW model assumes that the surface is composed of spheres with 

a random (Gaussian) distribution of summit heights but with a common radius. This is 

pushed into contact with a rigid flat surface and the number of contacts, total contact 

area, total load and asperity pressure ranges (including the fraction of asperities beyond a 

yield pressure) are calculated. However, some adjustments to the GW model are required. 

Longuet-Higgins [4.11] showed that for a Gaussian distribution of surface heights, the 

distribution of summit heights is not itself Gaussian. Furthermore, the curvature of higher 
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summits is generally higher (i.e. sharper) than for lower summits. Nayak [4.10] provided 

a model that takes these factors into account including the fact that asperities may be 

elliptical in nature. Finally, having both surfaces be rough and elastic instead of just one 

can be taken into account by simply adding the spectral moments of both surfaces 

together [4.9, 4.12]. The effect of all these corrections is succinctly described by McCool 

[4.9]. To summarize, the analysis requires calculation of the three spectral moments of 

the surface topograph z(x,y) as follows: 

 

 m0 = z
2

,  m2 =
dz

dx
,  m4 =

d
2
z

dx2  (4.5) 

 

where x is an arbitrary direction and  denotes a statistical average. m0 is the mean 

square surface height, and so the RMS roughness Rq = m0 . From this one calculates the 

“bandwidth parameter” α = m0m4 m2

2
, which is related to the asperity density. The true 

contact area Ac and total load P with respect to the apparent contact area A0 are calculated 

from the following equations provided by McCool [4.9]: 

 

 
Ac
A0

= 0.0640 α − 0.8968( )
1/ 2

⋅F1

d

σ s

 

  
 

  
 (4.6) 

 
P

A0

= 0.0333E
*
m2

1/2
α − 0.8968( )

3/ 4
⋅F3/2

d

σ s

 

  
 

  
 (4.7) 

 

where 

 

 E
*

=
1− ν1

2

E1

+
1− ν2

2

E2

 

  
 

  

−1

 (4.8) 

 

is a combination of the Poisson’s ratios and Young’s moduli of the two surfaces. For the 

calculations we use E=164 GPa and ν=0.23 for the two polysilicon surfaces. As well, 

 

 Fn (t) =
1

2π
(x − t)

n
e

− x 2 /2
dx

t

∞

∫ . (4.9) 

 

which comes about from integrating the various quantities in the Hertz theory of contact 

over a Gaussian height distribution. The ratio d/σs is the summit mean plane separation d  

divided by the RMS summit height variation σs. As the surfaces approach, d decreases. 
With the adjustments made above, McCool [4.9] asserts that the GW formalism should 

provide at least an order of magnitude estimate, if not better, for a wide range of rough 

surfaces.  

 

 In order to evaluate the spectral moments from our images, the following procedure 

was used. Images were recorded with at least 256 x 256 pixel resolution. Using SPM32 

software from RHK Technology (Troy, MI) the RMS value was calculated and then 
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squared to provide the value of m0. Each image was then expanded to 1024x1024 pixels 

with the new pixel values calculated by interpolation. This reduced the amount of errors 

in derivative images that are inherently generated due to pixelation and noise. To reduce 

errors due to noise fluctuations, the images were smoothed using a modest pair of median 

filtering and smoothing algorithms. The median filter takes high and low pixel values and 

replaces them with the median value of neighboring pixels. After this step the image is 

smoothed using a two-dimensional weighted average of the adjacent pixels. The first and 

second derivatives of the image with respect to the scan direction were then calculated 

from this expanded smoothed image, and the RMS values of these derivative images 

were found. The square of these RMS values provided the values of m2 and m4 

respectively. The above formulae 

were then used to predict the 

properties of these MEMS 

surfaces in contact. 10 x 10 µm
2
 

images were chosen for this 

analysis as they provided a larger 

sample size of the features. For 

the calculations, we imposed a 

surface separation equal to one 

standard deviation of the 
combined summit height 

distribution σs. This was chosen 

to ensure that the calculations 

represented a substantial but not 

severe interaction between the 

surfaces, and it should be noted 

that this value is different for the 
two interfaces. 

 

     The results are summarized in 

Table 4.2. All values here were 

calculated from the GW an

We see a strong contrast b

the unoxidized and max

oxidized surfaces. The ox

produces rougher surfac

there are slightly fewer s
per unit area. This is li

result of the increased size

grain boundaries. The a

summit radius is smalle

factor of ~3 for the rou

surfaces. These value

averages of all summits, a

clearly much larger th

smallest asperities present

Table 4.2 

 

Parameter 

(units) 

Unoxidized 

sample 

Maximally 

oxidized 

sample 

 

summit density 

(/µm
2
) 

4510
 

4160 

average 

summit radius 

(nm) 

2320 806 

σs, standard 
deviation of 

summit height 

distribution 

(nm) 

0.173 1.62 

number of 

contact points 

for a 10x100 

µm
2
 cantilever 

1.53x10
5
 4.24x10

4
 

ratio of true to 

apparent 

contact area 

0.031 0.0065 

true contact 

area for a 
10x100 µm

2
 

cantilever 

(µm
2
) 

30.7 6.48 

load for a 

10x100 µm
2
 

cantilever 

(mN) 

15.1 8.23 

average 

contact 

pressure (MPa) 

493 1270 
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surface. Therefore, it is likely that this simulation will underestimate the fraction of 
plastically deformed asperities. 

  

 

     The roughened surfaces show nearly an order of magnitude larger standard deviation 

in summit heights. In combination with the smaller summit density, this leads to a 

smaller contact point density by a factor of three. The ratio of true to apparent contact 

area is small for both interfaces, which is a typical and important result for rough 

surfaces. As expected, the roughening leads to a much smaller contact area fraction, by 

about a factor of 5 compared with no roughening.  

 
 For the separations imposed, the unoxidized surface supports more load. This is 

simply due to the fact that the contact area is higher for the given separation. More 

importantly, the average contact pressure, despite the lower load, is nearly three times 

higher for the roughened interface. This is due to the fact that the asperities are smaller. 

The average pressure is significant, and suggests that in combination with shear stresses 

(which are not considered in this model), wear of the asperities is likely for both cases, 

but far more likely for the roughened interfaces. Using a hardness of 11 GPa for silicon 

[4.2], the model predicts vanishingly small fractions of “plastically” deformed asperities. 

We believe this is an underestimate due to the aforementioned averaging of the asperity 

radius. 

 

4.4 Model incorporating adhesion 
  
 The first basic phenomenon that distinguishes MEMS-scale friction from 

macroscopic tribological behavior is the effects of adhesion are significant and apparent. 
As results in Section 3.3 have shown, the assumed adhesion behavior is more DMT-like, 

i.e. diffuse adhesion with stiff elastic bodies, than JKR-like, i.e. concentrated adhesion 

regions on relatively soft elastic bodies. With this in hand, the appropriate extension of 

GW’s original model [4.13] involves another term  

 p(d) =
1

A

4

3
E R(h − d)

3

2 φ(h)dh∫ +
1

A
2πwRφ(h)dh∫  (4.10) 

which is a direct result of the Deryaguin, Muller, Toporov (DMT) solution [4.14] 

 f =
4

3
E Rd

3

2 + 2πwR . (4.11) 

In this equation w is the characteristic work of adhesion. Since in the DMT solution area 

of contact has the same dependence on the displacement, d, the real area of contact, 
which is related to friction, is still given by the Hertzian result: 

 A(d) = πR(h − d)φ(h)dh∫ . (4.12) 

 

 The effective applied normal load is the only affected observable, as shown in Fig. 

4.7, where the lower curve is a non-dimensionalized GW model with a Hertzian 

interaction and the upper curve is GW with a DMT interaction. This leads directly to the 

real contact area not going to zero as the applied normal load goes to zero. Hence the 

following graph (Fig. 4.8) shows that the ratio of the real area of contact (which is 



 54 

proportional to the slipping limit of a force tangential to the surface) to the normal 

applied load becomes unbounded for the DMT based model (upper) versus the (nearly) 

constant value expected from Coulomb’s law for the Hertz based model (lower). Using 

textbook values of the material properties of silicon (e.g. w = 0.1 J/m
2
) and a 100 µm

2
 

sample area where the height distribution is nearly Gaussian with high outliers (see Fig. 

4.9), Fig. 4.10 shows the small but significant effect of adhesion, which diminishes as 

more asperities come into contact. For coated asperities, the corresponding GW model is 

complicated by the fact that layer compliance affects the contact area, but the model 

follows in a similar fashion. 

 

4.5 Thoughts on modeling PSTD 
 

 The second phenomenon that distinguishes the tribology of small devices is a 

significant pre-sliding tangential deflection (PSTD), whereas the Coulomb model has a 

sharp transition from stick to slip. It is possible to generate a GW-like model of friction 
that has a transition region due to changing populations of sticking and slipping asperities 

as the Fig. 4.11 demonstrates. Here, the upper curve is generated by a model based on a 

continuous distribution, and the lower curve from a model with a discrete distribution of 

asperities. Currently, however, the length-scale of this transition region is tied to 

roughness length-scale, whereas the observed PSTD events can be hundreds of times as 

large as the RMS roughness of the surfaces. Furthermore, from the direct simulations 

described in Section 2.1.9, it is clear that small asperity population and serendipitous 

alignment play a crucial role in the PSTD behavior seen in our devices. If there is truly a 

need to know details of geometry, then (deterministic) homogenization will fail to be 

predictive. If a clear mechanism can be identified perhaps progress can be made in this 
area. Even finding a characteristic length-scale to the PSTD events could lead to a simple 

phenomenological model with response similar to Fig. 4.11. 
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       (a)   (b) 

 
Figure 4.1. 10 x 10 µm

2
 (a) and 1 x 1 µm

2
 (b) topographic images of the Poly0 surface. The z-height 

range is 35 and 20 nm, respectively. 

 

 
        (a)   (b) 
 
Figure 4.2. 10 x 10 µm

2
 (a) and 1 x 1 µm

2
 (b) topographic images of the oxidized and etched Poly0 

surface. The z-height ranges are 100 and 50 nm, respectively. 
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 (a) (b) 
Figure 4.3. 10 x 10 µm

2
 (a) and 1 x 1 µm

2
 (b) topographic images of the Poly1/2 surface counterpart 

to the unoxidized Poly0.  

 

  
        (a) (b) 
Figure 4.4. 10 x 10 µm

2
 (a) and 1 x 1 µm

2
 (b) topographic images of the Poly1/2 surface counterpart 

to the oxidized and etched Poly0. The z-height ranges are 100 and 50 nm, respectively. 
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Figure 4.5. A rough surface (z-scale greatly exaggerated) with a flat rigid surface approaching from 

above (thick solid line). The undeformed surface is shown, where the shaded asperities would be 

deformed. At left is the height distribution function for the summits (solid line) and for the entire 

surface (dashed line). d represents the spacing between the summit mean plane and the approaching 

surface. The rigid surface is replaced by a rough deformable surface for our analysis. 
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Figure 4.6. Non-dimensionalized real contact area vs. non-dimensionalized pressure. 
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Figure 4.7. Non-dimensionalized contact area versus non-dimensionalized normal load. 
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Figure 4.9. Height distribution sorted into 100 bins. 
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Figure 4.8. Non-dimensionalized area/load versus non-dimensionalized normal load. 
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Figure 4.10. Non-dimensionalized real area of contact versus applied pressure. 

 

Figure 4.11. Non-dimesionalized tangential force versus slip. 
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Non-dimensionalized slip 
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5. Summary 

 

 We did not anticipate the discovery of the Pre-sliding Tangential Displacement 

(PSTD) phenomenon when this study began. This phenomenon cannot be described by a 

classical coefficient of friction, and for small nano-scale sliding distances Amontons’ law 

does not apply. This is our most important finding. PSTD can determine the operation of 

some MEMS devices. For example, the operation of the nanotractor, with its 40 nm step 

size, cannot be predicted on the basis of measured static and dynamic friction 

coefficients. We have developed a simple 2-D model to help us understand the mechanics 
of PSTD. This model suggests that PSTD is a cascade of small-scale slips with a roughly 

constant number of contacts equilibrating the applied normal load. PSTD appears to 

depend not only on the specific spatial features of the contacting surfaces, but also on 

load level. We do not yet fully understand this phenomenon. It depends on the nature of 

the contacting surfaces (i.e., OTS-coated vs. FOTAS-coated), and there are indications of 

time-dependent behavior for OTS-coated materials. 

 

 We also had a number of other significant accomplishments during this three-year 

study. Below are listed some of these.  
 

• Developed and used a nanotractor friction test device to measure static and dynamic 
MEMS-level friction data for a variety of SAM-coated polysilicon surfaces and also 

measured the effect of adhesion at low loads. 

• Used the nanotractor to characterize the wear of polysilicon surfaces. 

• Developed a routine method for  ± 1 nm in-plane measurements. 
 

• Developed a software scripting language (MEMScript) to enable automatic data 
logging and a wide range of actuation/measurement in MEMS. 

 

• For the first time, measured single asperity-level data defining the resistance of SAM-
coated silicon/silicon junctions to slip. 

• Performed asperity-scale finite element simulations of friction using AFM-measured 
polysilicon surface topography and nano-scale adhesion and shear junction strengths 

inferred from AFM friction tests.  

• Performed a detailed characterization of polysilicon topography and, for the first 
time, used this data as input to multi-asperity contact models. Revealed that 

roughening surfaces, while reducing total contact area moderately (good for stiction) 

increases the tendency toward damage dramatically (bad for friction). 

• Developed grid-level models for friction in polysilicon micromachines. 
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Appendix B. Analysis of a SAM-Coated Silicon Substrate by a 
Spherical-tipped Silicon Indenter 
 

 

Consider the problem shown schematically in Figure B.1. 

 

 
  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. B.1. A spherical indenter-tip contacting a coated, semi-infinite substrate. 

 

 

 

 Based upon dimensional analysis considerations, the contact area will depend on 

variables P, R, E, ν, Ec, νc, and hc in the following manner: 
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Note that with this definition, the function f equals 1 when the nominal penetration 

distance is very small relative to the coating thickness (i.e., the substrate does not 

influence contact). When the penetration distance is large, the coating will have 

negligible affect on contact, and the function f will have the value 2 / 1+ E /E c( )( )
2 / 3

. 

 

 The finite element results indicate that for the range of penetration distances 

considered (maximum of 0.4 nm relative to the coating thickness of 2 nm generates a 

maximum nominal coating strain of 0.2) the function f can be approximated by a power 

law relationship with respect to the variable P /E chc
2. 
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Figure B.2 shows one example of a power-law fit for the function f. 

 

Fig. B.2. Function f as determined by a finite element analysis for R=27 nm, E=161 GPa, ν= 0.23ν= 0.23ν= 0.23ν= 0.23, 

Ec=8 GPa, ννννc=0.4, and hc= 2 nm and the associated power-law fit. 

 

  

 Table B.1 lists values of the parameters A and b, for the specified nondimensional 
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indicated (care must be taken when extrapolating beyond this value). Also recall that as 

P /E chc
2 approaches zero, the function f approaches a value of 1. Consequently, the 

power-law fit is not valid when small P /E chc
2 generate f values greater than 1. When this 

occurs, f should be set equal to 1. 
 

Table B.1. Values of the parameters A and b defining the power-law fit for the function f 

as determined from the finite element analysis. 

 

Case R 

(nm) 

Ec 

(GPa) 

Ec/E hc/R ν νc Maximum 

P /E chc
2 

A b 

1 27 8 0.0560 0.0741 0.23 0.40 1.59 0.679 -0.097 

2 30 8 0.0560 0.0667 0.23 0.40 1.74 0.662 -0.084 

3 35 8 0.0560 0.0571 0.23 0.40 1.97 0.643 -0.089 

4 27 2 0.0140 0.0741 0.23 0.40 2.33 0.646 -0.109 

5 27 4 0.0280 0.0741 0.23 0.40 2.01 0.656 -0.110 

6 27 16 0.1120 0.0741 0.23 0.40 1.12 0.727 -0.078 

7 27 16 0.0560 0.0741 0.23 0.40 1.59 0.667 -0.099 

 

 When there is no coating on the substrate, the Hertz solution predicts that contact area 

and contact load are related by a power-law with an exponent of 2/3. Note, however, that 

when there is a compliant coating on the substrate, a negative exponent b gives rise to a 

power law relationship between contact area and contact load that has an exponent that 

differs from 2/3 (Eqs. B.1 and B.2). The first 3 entries in Table 1 examine the affect of 

varying the indenter-tip radius. The variations in the A and b parameters are thought to be 

within the accuracy of the analysis. Note that the ~0.2-nm element in the contact region 

limits the precision for determining the contact radius (the maximum contact radius is 

typically ~ 4 nm).  A reasonable common choice for the parameters for Cases 1-3 are A = 

0.66 and b = –0.09. Cases 1, 4, 5, and 6 examine the effect of varying the modulus of the 

coating. It appears that there may be a modest increase in the parameter A and a modest 

decrease in the exponent b as Ec/E increases.  

 

Case 7’s modulus values are twice those of Case 1, but the nondimensional parameter 

Ec/E is unchanged. This calculation was performed to check the presumed 

nondimensional form of the function f. As anticipated, the A and b parameters are 

essentially the same (Eq. B.2). 
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Appendix C.  AFM friction testing 
 

AFM methodology 

 

 The Atomic Force Microscope (AFM) is a useful tool for understanding micro- to 

nano-scale features of a surface, as described in Section 4.1, as well as frictional 

properties at the nano-scale. The AFM consists of a flexible cantilever in contact with a 

sample. A laser beam is reflected from the backside of the cantilever beam and its relative 

motion is recorded using a position sensitive photodiode. In this manner the AFM is 

sensitive to normal and lateral displacements of the cantilever as it scans across the 

surface. An AFM cantilever can be scanned so that the direction of motion is 

perpendicular to the long axis of the cantilever. The lever twists due to the frictional 

resistance experienced by the tip, and the laser spot reflected from the back of the 

cantilever moves laterally on the photodetector. Friction is determined by taking half the 

difference of the forward and backward scans along a given line on the surface. 

Normally, in feedback control, the cantilever is scanned at a constant applied load. This 

load can then be varied in a controlled manner as described below. We refer to this type 

of experiment as determining friction as a function of load, or more simply “friction 

versus load”.  

 

 Friction versus load curves can be obtained by the following procedure. First, the 

AFM system needs to be able to vary the applied load on the cantilever while 

simultaneously monitoring and recording the normal and lateral signals during scanning. 

We accomplished this by applying an external signal to the AFM via a breakout box to 

change the set-point value, or the applied normal load, in the feedback control. This 

method allows for feedback control while the load is varied during scanning, which 

permits for measurements on rough or sloped surfaces. Friction and load are continuously 

measured by monitoring the position of the laser reflection on the photodetector in the 

normal and lateral directions, respectively. A continuously varying voltage signal is 

applied, so it should be noted that the load continuously varies during the experiment, 

even during one scan line. To account for this, the load is varied slowly, and the load and 

friction variation on one line are averaged to obtain one data point of load and friction for 

each scan line. This is reasonable since the variation in voltage during one scan line is 

small compared to the range of voltages applied during the experiment. To monitor the 

reproducibility of the data the applied load is started at a high load, ramped down until 

pull-off occurs, and then increased back to the starting load. This way the same normal 

applied load is measured twice within a short span of time, for both increasing and 

decreasing load. If the data is the same in both cases the data has been reproduced. This 

can be checked by repeating the friction measurements at different locations on the 

sample surface to check for any variation.  

 

 For consistent friction results, friction versus load data was obtained on a small area 

(100 nm x 100 nm) to minimize the effects of possible sample topographic and chemical 

inhomogeneity. However, this scanned area is large enough to ensure that the AFM tip 

overcomes the static friction and actually slides across the surface, which is easily 

verified by confirming that the friction loops contain a steady-state sliding regime. When 
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analyzing the friction data, only the portion of the friction traces that corresponds to this 

steady state sliding situation should be considered, thereby excluding the static friction 

regimes.  

 

Relation between contact area and friction 

 

Several studies have shown that the friction force in solid-solid nanocontacts below 

the wear threshold is often proportional to the true contact area, i.e. the number of 

interfacial atoms [C.1-C.6]. This was demonstrated by measuring both friction and the 

nano-scale contact area experimentally. In other words, friction Ff for a single asperity 

contact is given by:  

 Ff = τ *A  (C.1) 

 

where A is the interfacial contact area, and τ∗ is the interfacial shear strength. As it 

represents the friction force per unit area of a pair of materials, one can also consider 

τ∗ as representing the intrinsic frictional dissipation per interfacial atom. 

 

 The shear strength is not necessarily constant, and may be more generally described 

as a constant plus a pressure-dependent term: 

 

 τ * = τ o

* + αp  (C.2) 

 

where p is the nominal contact pressure and α is a dimensionless coefficient. The 

magnitude and pressure dependence of the shear strength will depend on the materials 

and the sliding conditions (environment and temperature), and determining its behavior is 

a key goal in nanotribology – as is the determination of the general validity of Eq. (C.1), 

which may break down for sufficiently small contacts. Eq. (C.2) has been shown to apply 

very well to systems involving molecular films in contact in the SFA [C.7], for some soft 

solids in macroscopic contact [C.8], and for some systems measured with the AFM [C.9]. 

For bare solid interfaces, the majority of studies report that α is negligible [C.1-C.6, C.9-

C.19], but the range of materials for which this has been tested is still somewhat limited.  

 

Brief intro to molecular organic monolayers 

 

 Several different molecular precursors were used to create organic hydrophobic 

monolayer coatings for silicon MEMS surfaces. Their chemistry is briefly introduced 

here. Three different molecular films were used in these studies: octadecyltrichlorosilane 

(OTS, sometimes called ODTS), octadecene, and (tridecafluoro-1,1,2,2-

tetrahydrodecyl)tris(dimethylamino)silane (FOTAS). Fig. C.1 gives the chemical 

structure of each of these molecules and how they might attach to either a SiO2 or Si 

surface. As can be seen from Fig. C.1, the OTS and octadecene are similar molecules, 

except for their head groups that bind to the surface. This allows for distinct bonding 

mechanisms of this precursor to a substrate. The OTS molecule bonds to a silicon oxide 

surface via a Si-O bond, while the octadecene bonds to a silicon surface with a direct C-

Si bond. This will influence their frictional properties, as will be discussed later. The  
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Fig. C.1. Chemical schematics of the molecular precursors and the most probable attachment of 

these molecules to their respective substrates. 

 

 

FOTAS molecule is a much shorter chain, terminated in F instead of H. This also will 

influence its frictional and adhesive properties. 

 

Uncoated tip experiments:  

 

 All AFM data shown in this report were taken using a Digital Instruments Nanoscope 

IV MultiMode AFM (Santa Barbara, CA). The sample was a silicon substrate coated with 

a thin organic film. The tip was either a commercial silicon tip with its native oxide 

termination, or the same type of tip coated with an organic monolayer, just like the 

substrates. This second case mimics the conditions of the MEMS interfaces, where both 

surfaces are coated with the SAM. The data were acquired according to the procedure 

outlined above, where a ramped voltage was applied to AFM electronics to continuously 

vary the set-point. Note that the normal load axis is defined such that zero corresponds to 

zero externally applied load. That is, a normal load of zero corresponds to the signal the 

lever possesses when out of contact with the sample, and no load is acting.  

 

 The first experiments were performed using a Si tip with its native oxide sliding on 

the OTS and octadecene monolayers. A representative set of data is shown in Fig. C.2. 

We obtain distinct types of behavior depending on the substrate during the friction versus 

load tests. The first obvious observation is that for the majority of the loads tested, the 

OTS has larger friction than the octadecene. We also see that the trends in the two sets of 

data are distinct: the octadecene data is fairly linear, at least at low loads, and the OTS is 

non-linear. We can discover several things by fitting this data using a contact mechanics 

model that takes into account a range of possible surface adhesion and material 

deformation behaviors. (For more details on this, refer to [C.1].) As a preliminary step, 

we fit the data assuming that the material is completely homogeneous (i.e. ignoring the 

monolayer coating). Fitting using Eqs. (C.1) and (C.2) we find that OTS has a constant  

molecular precursors attached to a SiO2 or Si surface 

OTS Octadecene 

FOTAS 
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 Fig. C.2. Comparison of friction versus load curves for a silicon tip sliding on OTS and octadecene. 

 

shear strength and octadecene has a pressure dependent shear strength. So even though 

OTS has higher friction at the nanoscale up to approximately 25 nN,(corresponding to 

approximately 2 GPa of normal contact pressure), we find that at higher loads the 

octadecene appears to have higher friction. Certainly, extrapolating the trend would show 

friction for octadecene continuing to increase beyond OTS. This allows us to account for 

the trend in behavior at the microscale with the nanotractor, where octadecene has higher 

friction than the OTS (see Fig. 2.7). 
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Fig. C.3. Comparison of the frictional properties of OTS and FOTAS under a silicon AFM tip. 

 

 A comparison was also made between the FOTAS and OTS monolayer by scanning 

both of these materials with the same uncoated silicon tip. As seen in Fig. C.3, the OTS 

monolayer displays similar behavior as in Fig. C.2, where OTS can be found to have a 

constant shear strength. One may note that the absolute values of friction and pull-off 

force (and the resultant shear strength and adhesion energy) are different for the OTS on 

Figs.C.2 and C.3. Variability from day to day and from tip to tip was often seen for the 

OTS experiments, and may be attributed to variable tip chemistry due to the hydrophilic 

nature of a silicon tip terminated with its native oxide. The FOTAS frictional properties 

are seen to be similar to those of octadecene, in that the shear strength has a pressure 

dependence.  
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Fig C.4. AFM images of topography (left) and friction (right) that show the different phases present in an 

OTS-coated silicon surface. Light colors indication high values of height or friction, and dark colors indicate 

low values. 

Fig. C.5. Friction versus load experiments on the LC and LE phases of the OTS monolayer. Two 

runs are shown for each phase, which indicate tests performed on the same phase in different 

locations. The LE and LC friction versus load plots overlap at the high loads, but separate at the low 

loads, indicating different deformation or frictional mechanisms in this load regime. 



 72 

 

 

  

 It has been seen previously that the OTS film exhibits different phases on the silicon 

surface, as shown in Fig. C.4. The kinetics of these phases has been determined 

previously [C.20]. The two phases observed on our samples include a well-packed phase, 

called the Liquid Condensed (LC) phase, and less ordered phase, the Liquid Expanded 

(LE) phase. These phases are evident when an AFM image is taken of the surfaces, 

simultaneously recording topography and friction, as in Fig. C.4. The LC phase appears 

on the surface as flower patterns in both images, where these phases are slightly raised 

above the other phase (~0.2-0.5 nm higher) and have lower friction. This phenomenon 

was studied more in detail by performing friction versus load experiments on each phases 

separately. This result is shown in Fig C.5. Two runs were performed for each phase in 

different locations, but the data is consistent between runs on the same monolayer. In 

Fig. C.6. Comparison of friction versus load experiments using a single OTS-coated Si tip sliding 

on OTS-coated Si substrate. The data show good consistency for the first three trials, but friction 

tends to increase with time, suggesting progressive damage of the tip monolayer. 
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addition, the LE and LC friction versus load plots overlap at the high loads, but separate 

at the low loads, indicating different deformation or frictional mechanisms in this load 

regime. 

 

 

Coated tip experiments 

  

Fig. C.7 shows data for FOTAS-on-FOTAS. This data is quite linear, and is quite consistent from run 

to run and location-to-location on this experiment date, except for a slight overall decrease in 

friction, which may be due to run-in effects. 

 

 

 Silicon AFM tips were also coated with the molecular coatings using an identical 

process as for coating the flat silicon substrates. This allows us to better understand the 

MEMS interface of the nanotractor, since both surfaces are coated with the hydrophobic 

molecules. A study of OTS sliding on OTS is shown in Fig.C.6. We see that the 

appearance of these friction versus load curves are much more linear compared to the Si-

on-OTS curves shown in Figs. C.2 and C.3. Even in some cases, (e.g. the orange curve) 

there even appear to be multiple linear regions of behavior. Also at higher loads there 

tends to be a turning up of the curves, possibly indicating a stiffening behavior of the 
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molecules. The data show good consistency for the first three trials, but friction tends to 

increase with time, suggesting progressive damage of the tip monolayer. This frictional 

interface has shown increased reproducibility compared to the Si-on-OTS interface. We 

believe this is due to the better-controlled interface created by the molecular surface 

layers. This is an important point that may have impact throughout the entire 

nanotribology community: measurements of friction with the AFM may be irreproducible 

as the norm, not the exception, unless the tip is treated to be chemically inert. 

 

 

Coated vs Uncoated 

 

 
Fig. C.8. Comparison of experiments using coated and uncoated silicon tips, as indicated on the plot. 

 

 

 If we compare data between the friction versus load experiment performed using an 

uncoated silicon tip and performed using a monolayer-coated silicon tip, there are several 

observations (Fig. C.8.). First we see that for the loading from initial contact up to around 
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10 nN for these tips, friction is reduced by using a monolayer-on-monolayer tribopair as 

compared with silicon-on-monolayer. This is expected due to the hydrophilic and 

friction-reducing nature of these films. We also see that the trends between the different 

types of monolayer are similar. For instance, measuring friction with the uncoated tip 

shows a crossover of the behavior at around –8nN, where likewise there is a crossover 

point for the coated tip experiments at around –2nN. This is apparently due to the 

pressure-dependent nature of shear strength for the FOTAS interface, which allows for 

much lower friction at lower loads, with a steeper increase in friction with load.  

 

Preliminary conclusions from these initial studies are as follows: 

• Chemical modification of uncoated AFM tips greatly modifies the frictional response. 

• It is critical to check for reproducibility of AFM friction measurements. 

• Coating tips with SAMs enhances the stability of AFM tips for friction 

measurements, although slow degradation of the monolayer on the tip occurs and 

leads to increases in friction with time. 

• It is critical to determine the pressure-dependence of both the contact area and the 

shear strength of the interface to unravel what determines friction, and to be able to 

apply the results over wide pressure ranges. 

• OTS exhibits a pressure-independent shear strength, while FOTAS and octadecene 

exhibit pressure-dependent responses. This leads to the result that OTS exhibits 

higher friction than octadecene and FOTAS only at low loads; at high loads, the 

pressure-dependent shear strength causes friction for FOTAS and octadecene to 

increase more rapidly with load. 

• The pressure-dependent responses may be due to the different packing densities and 

short-range order in the film. OTS may be the densest phase. Compared with FOTAS, 

it has a smaller lateral van der Waals radius of its methylene chains, and its backbone 

is more linear. Compared with octadecene, the film may be denser and more uniform 

because OTS has some mobility as it is deposited on the substrate, whereas the 

octadecene will tend to react directly with the silicon and stay in place, thus 

preventing the film to re-organize to increase its density. Although these statements 

are speculative, this work points toward future experiments that can unravel the many 

contributions to friction at the nanoscale for monolayer films, which is a critical 

aspect to a wide range of nanoscience and nanotechnology applications. 
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