12 research outputs found

    Risks of a town-forming enterprise in the risk system of a company town

    No full text
    The article is devoted to review of risks of a town-forming enterprise in the risk system of the company town counterparties (infrastructure, population, small and medium business, local self-government authorities). It contains an algorithm of stepwise study of risks of a town-forming enterprise from the perspective of their interconnection with the risk system of the company town counterparties. Approbation of theoretical and methodical provisions by the example of town-forming enterprise Asha Metallurgical Plant OJSC, Asha, Chelyabinsk region, with the help of the graph theory allowed to analyze interconnections and dependence of risks of the town-forming enterprise and to make a conclusion on its negative role in creation of a crisis situation in the economy of the company town. The article is completed with a complex of lines for neutralization of risks of AMP OJSC: TFE’s infrastructural and technological risk management; personnel risk management policy; mitigation of consumer, product and supply risks; competitive struggle risk management and advertising risk management

    Risks of a town-forming enterprise in the risk system of a company town

    No full text
    The article is devoted to review of risks of a town-forming enterprise in the risk system of the company town counterparties (infrastructure, population, small and medium business, local self-government authorities). It contains an algorithm of stepwise study of risks of a town-forming enterprise from the perspective of their interconnection with the risk system of the company town counterparties. Approbation of theoretical and methodical provisions by the example of town-forming enterprise Asha Metallurgical Plant OJSC, Asha, Chelyabinsk region, with the help of the graph theory allowed to analyze interconnections and dependence of risks of the town-forming enterprise and to make a conclusion on its negative role in creation of a crisis situation in the economy of the company town. The article is completed with a complex of lines for neutralization of risks of AMP OJSC: TFE’s infrastructural and technological risk management; personnel risk management policy; mitigation of consumer, product and supply risks; competitive struggle risk management and advertising risk management

    Studies of hemolytical and antimicrobical action of Amanita virosa Secr. and Mycena pura /Fr./ Kumm. poisonous mushrooms lectins

    No full text
    Aim. To study hemolytical and antimicrobical action of two new lectins, obtained from fruit bodies of poisonous basidial mushrooms of A. virosa Secr. and M. pura /Fr./ Kumm. Methods. Research on hemolytical action of lectins was conducted on the erythrocytes of human and animals. The experiments on osmotic protection of erythrocytes were performed in the presence of polyethylenglycols of different molecular mass (in a range from 400 to 4000 Da). Antimicrobical activity of lectins was studied by determination of area delay of growth of culture of different types of microorganisms on the Petri dish in an agaric media. Results. Both lectins hemolyse the erythrocytes of rabbit, human, rat and dog and do not hemolyse the erythrocytes of cow and ship in concentration of 1 mg/ml. The rabbit erythrocytes are most sensitive to hemolytical action of lectins, while hemolytic ability of A. virosa lectin is higher. Hemolysis was not observed in the presence of PEG of molecular mass over 1,350 Da. Action of lectins on 10 types of microorganisms was investigated. Lectins inhibited mainly growth of grammpositive microorganisms and protey. For most tested microorganisms antimicrobial action of Mycena lectin is stronger comparing with A. virosa lectin. Conclusions. Two new hemolytical lectins are found in the fruit bodies of mushrooms-basidiomycetes. The lectin formed ion-permeable pores in membrane of erythrocytes with the hydrodynamic diameter smaller than 2.3 nm and larger than 1.6 nm. These lectins displays also antimicrobial activity and by the sum of these features are similar to the cytolytic lectins of lower invertebrates.ΠœΠ΅Ρ‚Π°. Дослідити Π³Π΅ΠΌΠΎΠ»Ρ–Ρ‚ΠΈΡ‡Π½Ρƒ Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ Π΄Ρ–Ρ— Π΄Π²ΠΎΡ… Π½ΠΎΠ²ΠΈΡ… Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ–Π², ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ… Π· ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΈΡ… Ρ‚Ρ–Π» ΠΎΡ‚Ρ€ΡƒΠΉΠ½ΠΈΡ… Π³Ρ€ΠΈΠ±Ρ–Π²-Π±Π°Π·ΠΈΠ΄Ρ–ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² A. virosa Secr. Ρ‚Π° M. pura /Fr./ Kumm. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π“Π΅ΠΌΠΎΠ»Ρ–Ρ‚ΠΈΡ‡Π½Ρƒ Π΄Ρ–ΡŽ Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ–Π² Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Π½Π° Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Π°Ρ… людини Ρ– Ρ‚Π²Π°Ρ€ΠΈΠ½. ЕкспСримСнти Π· осмотичного захисту Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ–Π² Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΎ Π·Π° присутності ΠΏΠΎΠ»Ρ–Π΅Ρ‚ΠΈΠ»Π΅Π½Π³Π»Ρ–ΠΊΠΎΠ»ΡŽ Ρ€Ρ–Π·Π½ΠΎΡ— молСкулярної маси (Π² Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– Π²Ρ–Π΄ 400 Π΄ΠΎ 4000 Π”Π°). Антимікробну Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ–Π² Π°Π½Π°Π»Ρ–Π·ΡƒΠ²Π°Π»ΠΈ, Π²ΠΈΠ·Π½Π°Ρ‡Π°ΡŽΡ‡ΠΈ Π·ΠΎΠ½Ρƒ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ росту ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΈ Ρ€Ρ–Π·Π½ΠΈΡ… Π²ΠΈΠ΄Ρ–Π² ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Π½Π° Ρ‡Π°ΡˆΠΊΠ°Ρ… ΠŸΠ΅Ρ‚Ρ€Ρ– Π² Π°Π³Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠΌΡƒ сСрСдовищі. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Обидва Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΈ Π³Π΅ΠΌΠΎΠ»Ρ–Π·ΡƒΡŽΡ‚ΡŒ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚ΠΈ кроля, людини, Ρ‰ΡƒΡ€Π° Ρ‚Π° собаки Ρ– Π½Π΅ Π³Π΅ΠΌΠΎΠ»Ρ–Π·ΡƒΡŽΡ‚ΡŒ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚ΠΈ ΠΊΠΎΡ€ΠΎΠ²ΠΈ ΠΉ Π±Π°Ρ€Π°Π½Π° Ρƒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— 1 ΠΌΠ³/ΠΌΠ». ΠΠ°ΠΉΡ‡ΡƒΡ‚Π»ΠΈΠ²Ρ–ΡˆΠΈΠΌΠΈ Π΄ΠΎ Π³Π΅ΠΌΠΎΠ»Ρ–Ρ‚ΠΈΡ‡Π½ΠΎΡ— Π΄Ρ–Ρ— Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ–Π² виявилися Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚ΠΈ кроля, Π³Π΅ΠΌΠΎΠ»Ρ–Π·ΡƒΡŽΡ‡Π° Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ Π»Π΅ΠΊΡ‚ΠΈΠ½Ρƒ A. virosa Ρ” Π²ΠΈΡ‰ΠΎΡŽ. Π“Π΅ΠΌΠΎΠ»Ρ–Π·Ρƒ Π½Π΅ спостСрігалося Π·Π° присутності ΠΏΠΎΠ»Ρ–Π΅Ρ‚ΠΈΠ»Π΅Π½Π³Π»Ρ–ΠΊΠΎΠ»ΡŽ Π· ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎΡŽ масою ΠΏΠΎΠ½Π°Π΄ 1350 Π”Π°. ДослідТСно Π΄Ρ–ΡŽ Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ–Π² Π½Π° 10 Π²ΠΈΠ΄Π°Ρ… ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π². Π›Π΅ΠΊΡ‚ΠΈΠ½ΠΈ ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΡŽΡ‚ΡŒ ріст ΠΏΠ΅Ρ€Π΅Π²Π°ΠΆΠ½ΠΎ Π³Ρ€Π°ΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Ρ– ΠΏΡ€ΠΎΡ‚Π΅ΡŽ. Для Π±Ρ–Π»ΡŒΡˆΠΎΡΡ‚Ρ– Π²ΠΈΠΏΡ€ΠΎΠ±ΡƒΠ²Π°Π½ΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Π° дія Π»Π΅ΠΊΡ‚ΠΈΠ½Ρƒ M. pura Ρ” ΡΠΈΠ»ΡŒΠ½Ρ–ΡˆΠΎΡŽ, Π½Ρ–ΠΆ Π»Π΅ΠΊΡ‚ΠΈΠ½Ρƒ A. virosa Secr. Висновки. Π—Π½Π°ΠΉΠ΄Π΅Π½ΠΎ Π΄Π²Π° Π½ΠΎΠ²ΠΈΡ… Π³Π΅ΠΌΠΎΠ»Ρ–Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΈ Π² ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΈΡ… Ρ‚Ρ–Π»Π°Ρ… Π³Ρ€ΠΈΠ±Ρ–Π²-Π±Π°Π·ΠΈΠ΄Ρ–ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π². Π’ΠΎΠ½ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΡŽΡ‚ΡŒ Ρƒ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π°Ρ… Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ–Π² Ρ–ΠΎΠ½ΠΎ-ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½Ρ– ΠΏΠΎΡ€ΠΈ, Π³Ρ–Π΄Ρ€ΠΎΠ΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΉ Π΄Ρ–Π°ΠΌΠ΅Ρ‚Ρ€ яких Ρ” мСншим Π·Π° 2,3 Π½ΠΌ, Π°Π»Π΅ Π±Ρ–Π»ΡŒΡˆΠΈΠΌ Π·Π° 1,6 Π½ΠΌ. Π—Π°Π·Π½Π°Ρ‡Π΅Π½Ρ– Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΈ Π²ΠΈΡΠ²Π»ΡΡŽΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΆ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ– Π·Π° ΡΡƒΠΊΡƒΠΏΠ½Ρ–ΡΡ‚ΡŽ Ρ†ΠΈΡ… ΠΎΠ·Π½Π°ΠΊ Π½Π°Π³Π°Π΄ΡƒΡŽΡ‚ΡŒ Ρ†ΠΈΡ‚ΠΎΠ»Ρ–Ρ‚ΠΈΡ‡Π½Ρ– Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΈ Π½ΠΈΠΆΡ‡ΠΈΡ… Π±Π΅Π·Ρ…Ρ€Π΅Π±Π΅Ρ‚Π½ΠΈΡ….ЦСль. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ гСмолитичСскоС ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ΅ дСйствиС Π΄Π²ΡƒΡ… Π½ΠΎΠ²Ρ‹Ρ… Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ², Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΏΠ»ΠΎΠ΄ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π» ядовитых Π³Ρ€ΠΈΠ±ΠΎΠ²-Π±Π°Π·ΠΈΠ΄ΠΈΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² A. virosa Secr. ΠΈ M. pura /Fr./ Kumm. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹.ГСмолитичСскоС дСйствиС Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ² исслСдовали Π½Π° эритроцитах Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. ЭкспСримСнты ΠΏΠΎ осмотичСской Π·Π°Ρ‰ΠΈΡ‚Π΅ эритроцитов Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π² присутствии полиэтилСнгликолСй Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ молСкулярной массы (Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 400–4000 Π”Π°). ΠΠ½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ, опрСдСляя Π·ΠΎΠ½Ρƒ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ роста ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Ρ€Π°Π·Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π½Π° Ρ‡Π°ΡˆΠΊΠ°Ρ… ΠŸΠ΅Ρ‚Ρ€ΠΈ Π² Π°Π³Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ срСдС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Оба Π»Π΅ΠΊΡ‚ΠΈΠ½Π° Π³Π΅ΠΌΠΎΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ эритроциты ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ°, Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, крысы ΠΈ собаки ΠΈ Π½Π΅ Π³Π΅ΠΌΠΎΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ эритроциты ΠΊΠΎΡ€ΠΎΠ²Ρ‹ ΠΈ Π±Π°Ρ€Π°Π½Π° Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 1 ΠΌΠ³/ΠΌΠ». Π­Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠ° оказались самыми Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊ гСмолитичСскому Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ², ΠΏΡ€ΠΈ этом Π³Π΅ΠΌΠΎΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π»Π΅ΠΊΡ‚ΠΈΠ½Π° A. virosa Π²Ρ‹ΡˆΠ΅. Π’ присутствии полиэтилСнгликоля с молСкулярной массой Π²Ρ‹ΡˆΠ΅ 1350 Π”Π° Π³Π΅ΠΌΠΎΠ»ΠΈΠ· Π½Π΅ наблюдался. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ дСйствиС Π»Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠ² Π½Π° 10 Π²ΠΈΠ΄ΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Π›Π΅ΠΊΡ‚ΠΈΠ½Ρ‹ прСимущСствСнно ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ рост Π³Ρ€Π°ΠΌΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ протСя. Для Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° исслСдованных ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² антимикробная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π»Π΅ΠΊΡ‚ΠΈΠ½Π° ΠΌΠΈΡ†Π΅Π½Ρ‹ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π»Π΅ΠΊΡ‚ΠΈΠ½Π° A. virosa. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. НайдСны Π΄Π²Π° Π½ΠΎΠ²Ρ‹Ρ… гСмолитичСских Π»Π΅ΠΊΡ‚ΠΈΠ½Π° Π² ΠΏΠ»ΠΎΠ΄ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π»Π°Ρ… Π³Ρ€ΠΈΠ±ΠΎΠ²-Π±Π°Π·ΠΈΠ΄ΠΈΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ². Они Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ ΠΈΠΎΠ½ΠΎ-ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΡ€Ρ‹, гидродинамичСский Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… мСньшС 2,3 Π½ΠΌ, Π½ΠΎ большС 1,6 Π½ΠΌ. Π£ΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ‹ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°ΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠΎ совокупности этих ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡŽΡ‚ цитолитичСскиС Π»Π΅ΠΊΡ‚ΠΈΠ½Ρ‹ Π½ΠΈΠ·ΡˆΠΈΡ… бСспозвоночных

    Закономірності Π²ΠΏΠ»ΠΈΠ²Ρƒ Ρ€Π΅ΠΆΠΈΠΌΡ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— Π½Π° Сксплуатаційні характСристики ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π²

    No full text
    ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ– дослідТСння Ρ‚Π° встановлСно Π½ΠΎΠ²Ρ– закономірності Π²ΠΏΠ»ΠΈΠ²Ρƒ Ρ€Π΅ΠΆΠΈΠΌΡ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Π½Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ якості ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π² Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π· ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ скла Ρ‚Π° ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ: чистоту Ρ‚Π° Π³Π»Π°Π΄ΠΊΡ–ΡΡ‚ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– – повСрхня Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π· ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ скла ΠΏΠΎΠ²Π½Ρ–ΡΡ‚ΡŽ ΠΎΡ‡ΠΈΡ‰ΡƒΡ”Ρ‚ΡŒΡΡ Π²Ρ–Π΄ Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ–Π², ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π²Ρ–Π΄Π±ΡƒΠ²Π°Ρ”Ρ‚ΡŒΡΡ підвищСння класу чистоти, змСншСння ΠΌΡ–ΠΊΡ€ΠΎΡˆΠΎΡ€ΡΡ‚ΠΊΠΎΡΡ‚Ρ– Π΄ΠΎ 0.4-1.3 Π½ΠΌ; Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½Ρƒ ΠΎΠΏΠ»Π°Π²Π»Π΅Π½ΠΎΠ³ΠΎ ΡˆΠ°Ρ€Ρƒ; Π·ΠΌΡ–Π½Ρƒ структури Ρ‚Π° Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ складу; ΡΡ‚ΠΈΡΠΊΠ°ΡŽΡ‡Ρ– напруТСння Ρ‚Π° Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½Ρƒ Π·ΠΌΡ–Ρ†Π½Π΅Π½ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π² – Ρƒ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ… Π· ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΡ— ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Π²ΠΈΠ½ΠΈΠΊΠ°ΡŽΡ‚ΡŒ ΡΡ‚ΠΈΡΠΊΠ°ΡŽΡ‡Ρ– напруТСння Π΄ΠΎ 30-70 МПа Ρƒ Π·ΠΌΡ–Ρ†Π½Π΅Π½ΠΈΡ… ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Π°Ρ… Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΎΡŽ 90-210 ΠΌΠΊΠΌ. Π—Π½Π°ΠΉΠ΄Π΅Π½ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ– Ρ€Π΅ΠΆΠΈΠΌΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— (густини Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ 7βˆ™106-8βˆ™108 Π’Ρ‚/ΠΌ2 Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅Π½ΡŽ, ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– ΠΉΠΎΠ³ΠΎ пСрСміщСння 5βˆ™10 – 3-5βˆ™10 – 2 ΠΌ/с), які ΠΏΠΎΠΊΡ€Π°Ρ‰ΡƒΡŽΡ‚ΡŒ Сксплуатаційні характСристики ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π²: Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ мікротвСрдості ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚Π° підвищСння міцності ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π², Π° Ρ‚Π°ΠΊΠΎΠΆ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° пропускання; підвищСння стійкості Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π΄ΠΎ Π·ΠΎΠ²Π½Ρ–ΡˆΠ½Ρ–Ρ… Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΈΡ… Ρ‚Π° ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… Π²ΠΏΠ»ΠΈΠ²Ρ–Π² ΠΏΡ€ΠΈ Ρ—Ρ… Сксплуатації. ΠŸΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π²Ρ–Π΄Π±ΡƒΠ²Π°Ρ”Ρ‚ΡŒΡΡ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π² Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρ‚Π° підвищСння Ρ—Ρ… Ρ‚Π΅ΠΏΠ»ΠΎΡ„Ρ–Π·ΠΈΡ‡Π½ΠΈΡ… властивостСй: об’ємної тСплоємності, ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° тСплопровідності, Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° Π»Ρ–Π½Ρ–ΠΉΠ½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·ΡˆΠΈΡ€Π΅Π½Π½Ρ. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ, Π° Ρ‚Π°ΠΊΠΎΠΆ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Ρ– Π½Π° Ρ—Ρ… основі ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ покращСння Сксплуатаційних характСристик ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², знайшли ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π΅ використанням Ρ‚Π° впровадТСння Π½Π° Ρ†Ρ–Π»ΠΎΠΌΡƒ ряді підприємств Π£ΠΊΡ€Π°Ρ—Π½ΠΈ, Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΡ–Π΄Π²ΠΈΡ‰ΠΈΡ‚ΠΈ Ρ‚ΠΎΡ‡Π½Ρ–ΡΡ‚ΡŒ Ρ‚Π° Ρ€ΠΎΠ·ΡˆΠΈΡ€ΠΈΡ‚ΠΈ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ΠΈ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Ρ– Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΈΡ… Π»Π°Π·Π΅Ρ€Π½ΠΈΡ… Π΄Π°Π»Π΅ΠΊΠΎΠΌΡ–Ρ€Ρ–Π² Π½Π° 7-15 %; Π·Π±Ρ–Π»ΡŒΡˆΠΈΡ‚ΠΈ ΠΉΠΌΠΎΠ²Ρ–Ρ€Π½Ρ–ΡΡ‚ΡŒ Π±Π΅Π·Π²Ρ–Π΄ΠΌΠΎΠ²Π½ΠΎΡ— Ρ€ΠΎΠ±ΠΈΡ‚ΠΈ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… ΠΎΠ±Ρ‚Ρ–Ρ‡Π½ΠΈΠΊΡ–Π² Π†Π§-ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² навСдСння Ρ– спостСрСТСння Ρ‚Π° Π²ΠΎΠ»ΠΎΠΊΠΎΠ½Π½ΠΎ-ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… світловодів Π»Π°Π·Π΅Ρ€Π½ΠΈΡ… ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΈΡ… ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² ΠΏΡ€ΠΈ Сксплуатації Π½Π° 10-20 %.Experimental researches and new regularities of influence of electron-beam processing modes on quantitative indexes of quality of surface layers of optical glass and ceramics elements are carried out: purity and smoothness of surface – the surface of optical glass elements is completely free of defects, at the same time, there is an increase of purity class, the reduction of microroughness to 0.4-1.3 nm; thickness of melted layer; structural change and chemical composition; squeezing tension and thickness of strengthened layers – in the optical ceramics elements there appear compression tensions up to 30-70 MPa in strengthened surface layers of 90-210 microns thick. Optimal modes of electron-beam technology are found (thermal impact density 7βˆ™106-8βˆ™108 W/m2 of electron beam, travel speed 5βˆ™10 – 3-5βˆ™10 – 2 m/s), which improve the performance characteristics of optical elements: increase of microhardness of the surface and increase of the strength of surface layers, as well as spectral transmission coefficient; increase of elements stability to external thermal and mechanical influences by their exploitation. Herein, there is a temperature increase of surface layers of elements and a rise in their thermal physical properties: volumetric heat capacity, thermal conductivity coefficient, thermal coefficient of linear expansion. The obtained experimental research results and developed on their basis methods of improvement of performance characteristics of optical elements found their practical use and introduction in a wide range of Ukrainian enterprises, which allowed to increase the accuracy and broaden measurement ranges of impulsive range finders for 7-15 %; to increase the probability of flawless performance of optical fairings of infrared guidance and observation devices and fiber-optic beam guides of laser medical devices while performing at 10-20 %

    ВизначСння ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² систСми Π½Π΅Ρ€ΡƒΡ…ΠΎΠΌΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… ΠΏΠΎΡ‚ΠΎΠΊΡ–Π² ΠΏΡ€ΠΈ ΠΎΠ±Ρ€ΠΎΠ±Ρ†Ρ– оксидних ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Π½Π° протяТних ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ…

    No full text
    Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρƒ модСль Π·ΠΎΠ²Π½Ρ–ΡˆΠ½ΡŒΠΎΠ³ΠΎ Ρ€Ρ–Π²Π½ΠΎΠΌΡ–Ρ€Π½ΠΎ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½ΠΎΠ³ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΡŽ плоского Π΄Π²ΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π° Π· ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ скала К108 Ρ‚Π° оксидного покриття Π· Al2O3, MgO, Ρ‰ΠΎ Π²Ρ€Π°Ρ…ΠΎΠ²ΡƒΡ” Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ– залСТності Ρ—Ρ… Ρ‚Π΅ΠΏΠ»ΠΎΡ„Ρ–Π·ΠΈΡ‡Π½ΠΈΡ… властивостСй (об’ємної тСплоємності Ρ‚Π° ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° тСплопровідності). Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½Ρ– значСння ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π·ΠΎΠ²Π½Ρ–ΡˆΠ½Ρ–Ρ… Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΈΡ… Π²ΠΏΠ»ΠΈΠ²Ρ–Π² (Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΈΡ… ΠΏΠΎΡ‚ΠΎΠΊΡ–Π² Ρ‚Π° часів Ρ—Ρ… Π΄Ρ–Ρ—), які ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΡΡ‚ΡŒ Π΄ΠΎ руйнування ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² (поява Ρ‚Ρ€Ρ–Ρ‰ΠΈΠ½, Π²Ρ–Π΄ΠΊΠΎΠ»Ρ–Π², Π²Ρ–Π΄ΡˆΠ°Ρ€ΡƒΠ²Π°Π½ΡŒ Ρ‚Π° Ρ–Π½.). Π’ΠΈΡ€Ρ–ΡˆΠ΅Π½ΠΎ Π·Π°Π΄Π°Ρ‡Ρƒ Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Ρ€Ρ–Π²Π½ΠΎΠΌΡ–Ρ€Π½ΠΎ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½ΠΎΠ³ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ Π²Π·Π΄ΠΎΠ²ΠΆ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– оксидного покриття Π·Π° допомогою систСми Π½Π΅Ρ€ΡƒΡ…ΠΎΠΌΠΈΡ… стрічкових Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… ΠΏΠΎΡ‚ΠΎΠΊΡ–Π² (Π‘Π•ΠŸ), Ρ‰ΠΎ Π²Ρ…ΠΎΠ΄ΡΡ‚ΡŒ Ρƒ вигляді ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎ ΠΊΠ΅Ρ€ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ модуля Ρƒ оснастку сучасного Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΠ³ΠΎ обладнання. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ допустимі Ρ€Π΅ΠΆΠΈΠΌΠΈ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² (ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Π‘Π•ΠŸ, ΠΊΠ΅Ρ€ΠΎΠ²Π°Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ ΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ Π‘Π•ΠŸ (струм, ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΡŽΡ‡Π° Π½Π°ΠΏΡ€ΡƒΠ³Π° Ρ‚Π° Π²Ρ–Π΄ΡΡ‚Π°Π½ΡŒ Π΄ΠΎ ΠΎΠ±Ρ€ΠΎΠ±Π»ΡŽΠ²Π°Π½ΠΎΡ— ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ–)), Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ ΠΏΠΎΠΊΡ€Π°Ρ‰ΡƒΠ²Π°Ρ‚ΠΈ Ρ—Ρ… Сксплуатаційні характСристики Ρ‚Π° ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄ΠΆΠ°Ρ‚ΠΈ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ– руйнування Ρƒ Π΅ΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ… Сксплуатації ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² (ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Ρ– Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Π½Π°Π³Ρ€Ρ–Π²Ρƒ, Ρ‚Π΅Ρ€ΠΌΠΎΡƒΠ΄Π°Ρ€Π½Ρ– Π²ΠΏΠ»ΠΈΠ²ΠΈ Ρ‚Π° Ρ–Π½.). Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²Π° ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠ° протяТних Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π· ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ скла Ρ‚Π° ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊ, Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π· п’єзокСрамік, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π· покриттями Π· оксидів ΠΌΠ΅Ρ‚Π°Π»Ρ–Π² Π²ΠΈΠ·Π½Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ як ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎ спромоТна для якісної ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ Ρ—Ρ… ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ Π·Π° допомогою систСми Π½Π΅Ρ€ΡƒΡ…ΠΎΠΌΠΈΡ… Π‘Π•ΠŸ, які ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані як Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½Π° Π±Π°Π·Π° Ρƒ ΠΌΡ–ΠΊΡ€ΠΎΠΎΠΏΡ‚ΠΈΡ†Ρ–, Ρ–Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ–ΠΉ Ρ‚Π° Π²ΠΎΠ»ΠΎΠΊΠΎΠ½Π½Ρ–ΠΉ ΠΎΠΏΡ‚ΠΈΡ†Ρ–, Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½Ρ–ΠΉ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–Ρ†Ρ– Ρ‚Π° Ρ–Π½ΡˆΠΈΡ… галузях Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ приладобудування.A mathematical model has been developed for the external uniformly distributed thermal effect on the surface of a flat bilayer element made of optical glass K108 and oxide coating with Al2O3, MgO, taking into account the temperature dependencies of their thermophysical properties (volumetric heat capacity and thermal conductivity). Critical values of external thermal impact parameters (heat flows and durations of their action) leading to the destruction of coatings (crack formation, detachment, delamination, etc.) have been determined. The problem of implementing a uniformly distributed thermal effect along the surface of the oxide coating using a system of fixed ribbon electron flows (REF) has been solved. These REFs are incorporated as a programmatically controlled module into the equipment of modern electron-beam devices. Permissible processing regimes for coating surfaces have been defined (the number of REFs, controlled parameters for each REF such as current, accelerating voltage, and distance to the processed surface). These regimes allow to improve their operational characteristics and prevent potential damage under extreme operating conditions of devices (elevated heating temperatures, thermal shock effects, etc.). Electron-beam processing of extended elements made of optical glass and ceramics, piezoceramic elements, as well as optical elements with coatings of metal oxides, is considered potentially capable of qualitatively processing their surfaces using a system of fixed REF. These REF can serve as the elemental basis in microoptics, integrated and fiber optics, functional electronics, and other fields of precision instrument engineering

    ВизначСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— ΠΌΡ–ΠΊΡ€ΠΎΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π²

    No full text
    Π―ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ°, Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Π·Ρ€ΡƒΡ‡Π½ΠΈΠΌ, Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ чистим Ρ‚Π° Π»Π΅Π³ΠΊΠΎΠΊΠ΅Ρ€ΠΎΠ²Π°Π½ΠΈΠΌ способом ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρ” Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄. Однак ΡˆΠΈΡ€ΠΎΠΊΠ΅ використання Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— Ρƒ ΠΎΠΏΡ‚ΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ»Π°Π΄ΠΎΠ±ΡƒΠ΄ΡƒΠ²Π°Π½Π½Ρ– ΡΡ‚Ρ€ΠΈΠΌΡƒΡ”Ρ‚ΡŒΡΡ Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² визначСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— ΠΌΡ–ΠΊΡ€ΠΎΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², Ρ‰ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡŒ собою ΡΡƒΠΊΡƒΠΏΠ½Ρ–ΡΡ‚ΡŒ ΠΊΠ΅Ρ€ΠΎΠ²Π°Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅Π½ΡŽ (струм Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΡƒ Ib = 50…300 мА, ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΡŽΡ‡Π° Π½Π°ΠΏΡ€ΡƒΠ³Π° VΡƒ = 4…8 ΠΊΠ’, Π²Ρ–Π΄ΡΡ‚Π°Π½ΡŒ Π΄ΠΎ ΠΎΠ±Ρ€ΠΎΠ±Π»ΡŽΠ²Π°Π½ΠΎΡ— ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– l = 6βˆ™10 – 2-8βˆ™10 – 2 ΠΌ, ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŒ пСрСміщСння ΠΏΡ€ΠΎΠΌΠ΅Π½ΡŽ V = 5βˆ™10 – 2-5βˆ™10 – 3 ΠΌ/с, час Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ t = 0,3…1,0 с), пСрСвищСння яких ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ Ρ†Ρ–Π»ΠΎΠ³ΠΎ ряду Π½Π΅Π±Π°ΠΆΠ°Π½ΠΈΡ… явищ, які ΠΏΠΎΠ³Ρ–Ρ€ΡˆΡƒΡŽΡ‚ΡŒ ΡΠΊΡ–ΡΡ‚ΡŒ ΠΎΠ±Ρ€ΠΎΠ±Π»ΡŽΠ²Π°Π½ΠΈΡ… ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Ρ– ΠΌΠΎΠ΄Π΅Π»Ρ– процСсу Π½Π°Π³Ρ€Ρ–Π²Ρƒ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π· ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ скла Ρ‚Π° ΠΊΠ΅Ρ€Π°ΠΌΡ–ΠΊΠΈ Ρ€Ρ–Π·Π½ΠΎΡ— Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— Ρ„ΠΎΡ€ΠΌΠΈ Ρ‚Π° Ρ€ΠΎΠ·ΠΌΡ–Ρ€Ρ–Π² (Ρ‚ΠΎΠ½ΠΊΠΎΠΏΠ»Ρ–Π²ΠΊΠΎΠ²Ρ– Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ, Ρ‚ΠΎΠ½ΠΊΡ– пластини Π²Π΅Π»ΠΈΠΊΠΈΡ… Ρ€ΠΎΠ·ΠΌΡ–Ρ€Ρ–Π²) Ρ€ΡƒΡ…ΠΎΠΌΠΈΠΌ стрічковим Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΠΌ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ΠΌ, Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ²Π°Ρ‚ΠΈ Π²ΠΏΠ»ΠΈΠ² ΠΉΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π½Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ– поля Ρƒ ΠΎΠ±Ρ€ΠΎΠ±Π»ΡŽΠ²Π°Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ…. ВстановлСно, Ρ‰ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² IΠΏ Ρ‚Π° VΡƒ Ρƒ Π²ΠΊΠ°Π·Π°Π½ΠΈΡ… Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Π°Ρ… ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ зростання ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π±Ρ–Π»ΡŒΡˆΠ΅, Π½Ρ–ΠΆ Ρƒ 2 Ρ€Π°Π·ΠΈ, Π° змСншСння ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² l Ρ‚Π° V – мСншС, Π½Ρ–ΠΆ Ρƒ 1,5 Ρ€Π°Π·ΠΈ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ– значСння ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅Π½ΡŽ, пСрСвищСння яких ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ появи Ρ‚Ρ€Ρ–Ρ‰ΠΈΠ½ Ρ‚Π° Π²Ρ–Π΄ΠΊΠΎΠ»Ρ–Π² Ρƒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Π°Ρ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ Ρ—Ρ… Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— Ρ„ΠΎΡ€ΠΌΠΈ Ρ‚Π° ΠΏΠΎΠ³Ρ–Ρ€ΡˆΠ΅Π½Π½Ρ ΠΌΠ΅Ρ‚Ρ€ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… характСристик ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² Π°ΠΆ Π΄ΠΎ Ρ—Ρ… Π²Ρ–Π΄ΠΊΠ°Π·Ρ–Π².As practice has shown, the most erratic, environmentally friendly, and easily controllable way of optical element treatment is the electron-beam method. However, the widespread use of electron beam technology in optoelectronic instrumentation is hampered by the lack of methods for determining optimal modes of electron beam microprocessing of optical elements, representing a set of controlled parameters of the electron beam (current of the beam Ib = 50…300 mА, accelerating voltage VΡƒ = 4…8 kV, distances to the treated surface l = 6βˆ™10 – 2… 8βˆ™10 – 2 m, beam movement speed V = 5βˆ™10 – 2…5βˆ™10 – 3 m/s, heat exposure time t = 0.3…1.0 s), excess of which leads to a number of undesirable phenomena, that harm the quality of the surfaces to be treated.There have been developed the mathematical models of the process of heating elements from optical glass and ceramics of various geometric shapes and sizes (thin film elements, thin plates of high size) by a moving belt electron beam, which allow to calculate the influence of its parameters on temperature fields in treated elements. It was established that the increase in the Ib and VΡƒ parameters in the specified ranges leads to an increase in the maximum surface temperature of optical elements by more than 2 times, and the decrease in the parameters l and V by less than 1.5 times. Optimal values of the parameters of the electron beam are determined, the excess of which leads to the appearance of cracks and splits in the surface layers of elements, violation of their geometric shape and deterioration of the metrological characteristics of the devices up to their failure

    Π•Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²Π° тСхнологія Π² ΠΎΠΏΡ‚ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ»Π°Π΄ΠΎΠ±ΡƒΠ΄ΡƒΠ²Π°Π½Π½Ρ–: високоякісні ΠΊΡ€ΠΈΠ²ΠΎΠ»Ρ–Π½Ρ–ΠΉΠ½Ρ– ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚Π° створСння ΠΌΡ–ΠΊΡ€ΠΎΠΏΡ€ΠΎΡ„Ρ–Π»Ρ–Π² Ρ€Ρ–Π·Π½ΠΎΡ— Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— Ρ„ΠΎΡ€ΠΌΠΈ

    No full text
    Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»Ρ–Π½Ρ–ΠΉΠ½ΠΈΡ… ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρ‚Π° створСння Π½Π° Π½ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠΏΡ€ΠΎΡ„Ρ–Π»Π΅ΠΉ Ρ€Ρ–Π·Π½ΠΎΡ— Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— Ρ„ΠΎΡ€ΠΌΠΈ Π·Π° допомогою систСми Π½Π΅Ρ€ΡƒΡ…ΠΎΠΌΠΈΡ… ΠΎΠ΄ΠΈΠ½ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ–Π² ΡˆΠ»ΡΡ…ΠΎΠΌ ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² установки (ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ–Π², Ρ—Ρ… струмів, ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΡŽΡ‡ΠΈΡ…Π½Π°ΠΏΡ€ΡƒΠ³ Ρ‚Π° відстанСй Π΄ΠΎ ΠΎΠ±Ρ€ΠΎΠ±Π»ΡŽΠ²Π°Π½ΠΈΡ… ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ), Ρ‰ΠΎ дозволяє ΡΡ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‚ΠΈ Ρ€Ρ–Π·Π½Ρ– ΠΌΡ–ΠΊΡ€ΠΎΠΎΠΏΡ‚ΠΈΡ‡Π½Ρ– Π΄Π΅Ρ‚Π°Π»Ρ– для ΠΎΠΏΡ‚ΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π². Π’ основу ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΏΠΎΠΊΠ»Π°Π΄Π΅Π½Ρ– Ρ€Π΅Π°Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ†Ρ– схСми Ρ€ΠΎΠ·Ρ‚Π°ΡˆΡƒΠ²Π°Π½Π½Ρ систСми ΠΎΠ΄ΠΈΠ½ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ–Π², Ρ‰ΠΎ Π΄Ρ–ΡŽΡ‚ΡŒ Π½Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»Ρ–Π½Ρ–ΠΉΠ½Ρ– ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π². Π—Π³Ρ–Π΄Π½ΠΎ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Π²ΠΈΡ€Ρ–ΡˆΡƒΠ²Π°Π»Π°ΡΡŒ Π·Π° допомогою дискрСтно Ρ€ΠΎΠ·Ρ‚Π°ΡˆΠΎΠ²Π°Π½ΠΈΡ… Π½Π΅Ρ€ΡƒΡ…ΠΎΠΌΠΈΡ… Π΄ΠΆΠ΅Ρ€Π΅Π» Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ Π³Π°ΡƒΡΡ–Π²ΡΡŒΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ Π· Ρ€Ρ–Π·Π½ΠΈΠΌΠΈ Π°ΠΌΠΏΠ»Ρ–Ρ‚ΡƒΠ΄Π°ΠΌΠΈ (ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ– значСння густини Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ–Π²) Ρ‚Π° ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π°ΠΌΠΈ зосСрСдТСності , Ρ‰ΠΎ Π΄Ρ–ΡŽΡ‚ΡŒ Π½Π° ΠΎΠ±Ρ€ΠΎΠ±Π»ΡŽΠ²Π°Π½Ρ– ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π². ΠŸΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ кСрування Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ Ρ‚Π°ΠΊΠΈΡ… Π΄ΠΆΠ΅Ρ€Π΅Π» Π·Π΄Ρ–ΠΉΡΠ½ΡŽΡ”Ρ‚ΡŒΡΡ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ Π· використанням мікропроцСсорної Ρ‚Π΅Ρ…Π½Ρ–ΠΊΠΈ. Показано, Ρ‰ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΡƒΡŽΡ‡ΠΈ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ–Π² (Π΄ΠΎ 50…70) ΠΌΠΎΠΆΠ½Π° ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ високу Ρ‚ΠΎΡ‡Π½Ρ–ΡΡ‚ΡŒ (відносна ΠΏΠΎΡ…ΠΈΠ±ΠΊΠ° Π΄ΠΎ 10 – 4…10 – 5) відповідності Π·Π°Π΄Π°Π½ΠΈΠΌ складним Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½ΠΈΠΌ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΈΠΌ Π²ΠΏΠ»ΠΈΠ²Π°ΠΌ Π²Π·Π΄ΠΎΠ²ΠΆ ΠΎΠ±Ρ€ΠΎΠ±Π»ΡŽΠ²Π°Π½ΠΈΡ… як плоских, Ρ‚Π°ΠΊ ΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠ»Ρ–Π½Ρ–ΠΉΠ½ΠΈΡ… ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΡ… для створСння Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠΏΡ€ΠΎΡ„Ρ–Π»Π΅ΠΉ Π½Π° Ρ—Ρ… повСрхнях Π·Π°Π΄Π°Π½ΠΎΡ— Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— Ρ„ΠΎΡ€ΠΌΠΈ. Нині внаслідок Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½ΠΈΡ… Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΡ‰Ρ–Π², які Π²Π½ΠΈΠΊΠ°ΡŽΡ‚ΡŒ, Π½Π΅ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎ Π·Π΄Ρ–ΠΉΡΠ½ΡŽΠ²Π°Ρ‚ΠΈ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Π΅ кСрування вСликою ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŽ ΠΏΡ€ΠΎΠΌΠ΅Π½Ρ–Π² (Π±Ρ–Π»ΡŒΡˆΠ΅ 10…15) Однак, Π·ΠΌΠ΅Π½ΡˆΡƒΡŽΡ‡ΠΈ Ρ—Ρ… ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ (Π½Π°ΠΏΡ€ΠΈΠΊΠ»Π°Π΄, Π΄ΠΎ 5…7), ΠΌΠΎΠΆΠ½Π° Ρ€Π΅Π°Π»Ρ–Π·ΠΎΠ²ΡƒΠ²Π°Ρ‚ΠΈ Π²ΠΊΠ°Π·Π°Π½Ρ– Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Π΅Π½Ρ– Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ– Π²ΠΏΠ»ΠΈΠ²ΠΈ Π· ΠΏΡ€ΠΈΠΉΠ½ΡΡ‚Π½ΠΎΡŽ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ†Ρ– Ρ‚ΠΎΡ‡Π½Ρ–ΡΡ‚ΡŽ (відносна ΠΏΠΎΡ…ΠΈΠ±ΠΊΠ° Π½Π΅ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΡ” 3…5 %).The curved surface treatment method of optical elements and functional microprofile creation of different geometric shapes using the system of fixed single electronic beams by optimizing the technological parameters of installation (the number of beams, their currents, accelerating voltages and distances to the processed surfaces) is developed. This method allows to create various microoptic parts for optoelectrical devices. The method is based on the practically implemented schemes of location of single electronic beam system that influence curved surfaces of optical elements. According to the developed method, the implementation task was solved using discretely located fixed sources of gaussian type thermal influence with different amplitudes (maximum values of electronic beam heat density) and focus factors influencing the processed surfaces of optical elements. At the same time, the impact control of such sources is carried out automatically using microprocessor equipment. It is shown that while increasing the number of electron rays (up to 50…70), you can get high accuracy of (relative error up to 10 – 4…10 – 5) compliance with the specified complex distributed thermal influences along the processed both flat and curved optical elements necessary for the creation of functional microprofiles on their surfaces of a given geometric shape. At present, due to technical difficulties that are appearing, it is impossible to effectively manage a large number of beams (more than 10...15) However, reducing their number (for example, up to 5...7), it is possible to implement these distributed heat influences with an acceptable accuracy in practice (relative error does not exceed 3...5 %)

    ВизначСння ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— ΠΌΡ–ΠΊΡ€ΠΎΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΈ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… пластин двоякої ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½ΠΈ

    No full text
    Π¨ΠΈΡ€ΠΎΠΊΠ΅ використання Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎ-ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— Ρƒ ΠΎΠΏΡ‚ΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ»Π°Π΄ΠΎΠ±ΡƒΠ΄ΡƒΠ²Π°Π½Π½Ρ– ΡΡ‚Ρ€ΠΈΠΌΡƒΡ”Ρ‚ΡŒΡΡ ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Ρ–ΡΡ‚ΡŽ Π΄Π°Π½ΠΈΡ… ΠΏΡ€ΠΎ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½Ρ– значСння ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅Π½ΡŽ (густини Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΏΡ€ΠΎΠΌΠ΅Π½ΡŽ, часу Ρ†ΡŒΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ Ρ‚Π° Ρ–Π½.) Π½Π° ΠΎΠΏΡ‚ΠΈΡ‡Π½Ρ– Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² Ρ€Ρ–Π·Π½ΠΎΡ— Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡ— Ρ„ΠΎΡ€ΠΌΠΈ (плоскі, прямокутні Ρ‚Π° ΠΊΡ€ΠΈΠ²ΠΎΠ»Ρ–Π½Ρ–ΠΉΠ½Ρ– Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ Ρ‚Π° Ρ–Π½.), пСрСвищСння яких ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ руйнування Ρ—Ρ… ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π² (поява Ρ‚Ρ€Ρ–Ρ‰ΠΈΠ½, Π²Ρ–Π΄ΠΊΠΎΠ»Ρ–Π², Π·Π°ΠΏΠ°Π΄ΠΈΠ½, ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ площинності ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– Ρ‚Π° Ρ–Π½.). На Π΄Π°Π½ΠΈΠΉ час Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ΠΈ Π·ΠΌΡ–Π½ΠΈ Π²ΠΊΠ°Π·Π°Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² для плоских пластин, прямокутних брусків, Ρ†ΠΈΠ»Ρ–Π½Π΄Ρ€ΠΈΡ‡Π½ΠΈΡ… Ρ‚Π° сфСричних Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π².Однак Π²ΠΊΠ°Π·Π°Π½Ρ– дослідТСння відсутні для ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρƒ вигляді пластин двоякої ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½ΠΈ, ΡˆΠΈΡ€ΠΎΠΊΠΎ використовуваних Ρƒ Ρ–Π½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ–ΠΉ Ρ‚Π° Π²ΠΎΠ»ΠΎΠΊΠΎΠ½Π½Ρ–ΠΉ ΠΎΠΏΡ‚ΠΈΡ†Ρ–, ΠΌΡ–ΠΊΡ€ΠΎΠΎΠΏΡ‚ΠΈΡ†Ρ– Ρ‚Π° Ρ–Π½ΡˆΠΈΡ… направлСннях ΠΎΠΏΡ‚ΠΈΠΊΠΎ-Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ приладобудування. Π ΠΎΠ±ΠΎΡ‚Π° присвячСна Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π½ΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅Π½ΡŽ Π½Π° ΠΎΠΏΡ‚ΠΈΡ‡Π½Ρ– Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ Ρƒ вигляді пластин двоякої ΠΊΡ€ΠΈΠ²ΠΈΠ·Π½ΠΈ, Ρ‰ΠΎ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Π· Π²Ρ–Π΄Π½ΠΎΡΠ½ΠΎΡŽ ΠΏΠΎΡ…ΠΈΠ±ΠΊΠΎΡŽ 5…7 % Π²ΠΈΠ·Π½Π°Ρ‡Π°Ρ‚ΠΈ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½Ρ– Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ΠΈ Π·ΠΌΡ–Π½ΠΈ ΠΉΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² (густини Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ, часу ΠΉΠΎΠ³ΠΎ Π΄Ρ–Ρ—), пСрСвищСння яких ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ ΠΏΠΎΠ³Ρ–Ρ€ΡˆΠ΅Π½Π½Ρ Ρ„Ρ–Π·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… властивостСй ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΈΡ… ΡˆΠ°Ρ€Ρ–Π² Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π°ΠΆ Π΄ΠΎ Ρ—Ρ… руйнування. Π¦Π΅ дозволяє Π½Π° стадії виготовлСння ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² Π· використанням Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Π²ΠΎΡ— Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ— ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄ΠΆΠ°Ρ‚ΠΈ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ– ΠΏΠΎΠ³Ρ–Ρ€ΡˆΠ΅Π½Π½Ρ Ρ—Ρ… Ρ‚Π΅Ρ…Π½Ρ–ΠΊΠΎ-Сксплуатаційних характСристик.The widespread use of electron beam technology in optoelectronic instrumentation is constrained by the limited data on the critical values of the parameters of the electron beam (density of thermal effect of the beam, the time of this effect, etc.) on the optical elements of devices of various geometric shapes (flat, rectangular and curvilinear elements, etc.), the excess of which leads to the destruction of their surface layers (the appearance of cracks, chips, cavities, violation of surface flatness, etc.). Currently, the ranges of change for these parameters for flat plates, rectangular bars, cylindrical and spherical elements have been determined. However, the studies mentioned are absent for optical elements in the form of plates of double curvature, widely used in integral and fiber optics, microoptics and other areas of optoelectronic instrumentation. The work is devoted to the development of mathematical models of the thermal effect of an electron beam on optical elements in the form of plates of double curvature, that allow with a relative error of 5... 7 % to determine the critical ranges of changes in its parameters (density of thermal effect, time of its action), the excess of which leads to a deterioration in the physical and mechanical properties of the surface layers in the elements up to their destruction. This allows to prevent possible deterioration of technical and operational characteristics at the stage of manufacturing devices with the usage of electron beam technology

    Palivizumab: Four seasons in Russia

    No full text
    In 2010, the Russian Federation (RF) registered palivizumab - innovative drug, based on monoclonal antibodies for passive immunization of seasonal respiratory syncytial virus (RSV) infection in children of disease severe progress risk group, which include primarily premature infants, children with bronchopulmonary dysplasia and hemodynamically significant congenital heart disease. Currently, palivizumab is included in the list of recommended medicines and medical care standards of different countries, including Russia. In the review the results of Russian research on the progress of RSV infection, its epidemiology and immunization experience gained over the 2010-2014 period are summarized in relation to the foreign data. During the four epidemic seasons palivizumab immunization covered more than 3,200 children of severe RSV infection risk group with a progressive annual increase in the number of patients who received the drug. Geography of palivizumab immunization is also greatly expanded in our country during this time. If during the first two seasons measures of immunization were taken mainly in Moscow and St. Petersburg, at the present time, thirty one territorial entities of the Russian Federation have the experience in the drug application. Analysis of the results of RSV infection immunization (made in several regions) confirms the high clinical efficacy and palivizumab safety already demonstrated in international studies. In addition, the analysis presents the potential to improve the efficiency of the integrated RSV infection immunization programs, realizing in the establishment of high-risk child group register, adequate counseling for parents, as well as the development of the routing of patients and coordination of interaction between different health institutions during the immunization. Β© 2014, Izdatel'stvo Meditsina. All rights reserved
    corecore