8 research outputs found

    Nanoscale Patterning of Organosilane Molecular Thin Films from the Gas Phase and Its Applications: Fabrication of Multifunctional Surfaces and Large Area Molecular Templates for Site-Selective Material Deposition

    No full text
    A simple methodology to fabricate micrometer- and nanometer-scale patterned surfaces with multiple chemical functionalities is presented. Patterns with lateral dimensions down to 110 nm were made. The fabrication process involves multistep gas-phase patterning of amine, thiol, alkyl, and fluorinated alkyl-functional organosilane molecules using PDMS molds as shadow masks. Also, a combination process of channel diffused plasma etching of organosilane molecular thin films in combination with masked gas-phase deposition to fabricate multilength scale, multifunctional surfaces is demonstrated

    Influence of resonant plasmonic nanoparticles on optically accessing the valley degree of freedom in 2D semiconductors

    No full text
    The valley degree of freedom is one of the most intriguing properties of atomically thin transition metal dichalcogenides. Together with the possibility to address this degree of freedom by valley-contrasting optical selection rules, it has the potential to enable a completely new class of future electronic and optoelectronic devices. Resonant optical nanostructures emerge as promising tools for controlling the valley degree of freedom at the nanoscale. However, a critical understanding gap remains in how nanostructures and their nearfields affect the polarization properties of valley-selective chiral emission hindering further developments in this field. In order to address this issue, our study delves into the experimental investigation of a hybrid model system where valley-specific chiral emission from monolayer molybdenum disulfide is interacting with a resonant plasmonic nanosphere. Contrary to the intuition suggesting that a centrosymmetric nanoresonator preserves the degree of circular polarization in the farfield, our cryogenic photoluminescence microscopy reveals almost complete depolarization. We rigorously study the nature of this phenomenon numerically considering the monolayer-nanoparticle interaction at different levels including excitation and emission. We find that the farfield degree of polarization strongly reduces in the hybrid system when including excitons emitting from outside of the system's symmetry point, which in combination with depolarisation at the excitation level causes the observed effect. Our results highlight the importance of considering spatially distributed chiral emitters for precise predictions of polarization responses in these hybrid systems. This finding advances our fundamental knowledge of the light-valley interactions at the nanoscale but also unveils a serious impediment of the practical fabrication of resonant valleytronic nanostructures

    An Atomically Layered InSe Avalanche Photodetector

    No full text
    Atomically thin photodetectors based on 2D materials have attracted great interest due to their potential as highly energy-efficient integrated devices. However, photoinduced carrier generation in these media is relatively poor due to low optical absorption, limiting device performance. Current methods for overcoming this problem, such as reducing contact resistances or back gating, tend to increase dark current and suffer slow response times. Here, we realize the avalanche effect in a 2D material-based photodetector and show that avalanche multiplication can greatly enhance the device response of an ultrathin InSe-based photodetector. This is achieved by exploiting the large Schottky barrier formed between InSe and Al electrodes, enabling the application of a large bias voltage. Plasmonic enhancement of the photosensitivity, achieved by patterning arrays of Al nanodisks onto the InSe layer, further improves device efficiency. With an external quantum efficiency approaching 866%, a dark current in the picoamp range, and a fast response time of 87 μs, this atomic layer device exhibits multiple significant advances in overall performance for this class of devices

    Few-cycle laser pulse characterization on-target using high-harmonic generation from nano-scale solids

    No full text
    We demonstrate high-harmonic generation for the time-domain observation of the electric field (HHG-TOE) and use it to measure the waveform of ultrashort mid-infrared (MIR) laser pulses interacting with ZnO thin-films or WS2_2 monolayers. The working principle relies on perturbing HHG in solids with a weak replica of the pump pulse. We measure the duration of few-cycle pulses at 3100\,nm, in reasonable agreement with the results of established pulse characterization techniques. Our method provides a straightforward approach to accurately characterize femtosecond laser pulses used for HHG experiments right at the point of interaction

    Exciton Dynamics in MoS<sub>2</sub>‑Pentacene and WSe<sub>2</sub>‑Pentacene Heterojunctions

    Get PDF
    We measured the exciton dynamics in van der Waals heterojunctions of transition metal dichalcogenides (TMDCs) and organic semiconductors (OSs). TMDCs and OSs are semiconducting materials with rich and highly diverse optical and electronic properties. Their heterostructures, exhibiting van der Waals bonding at their interfaces, can be utilized in the field of optoelectronics and photovoltaics. Two types of heterojunctions, MoS2-pentacene and WSe2-pentacene, were prepared by layer transfer of 20 nm pentacene thin films as well as MoS2 and WSe2 monolayer crystals onto Au surfaces. The samples were studied by means of transient absorption spectroscopy in the reflectance mode. We found that A-exciton decay by hole transfer from MoS2 to pentacene occurs with a characteristic time of 21 ± 3 ps. This is slow compared to previously reported hole transfer times of 6.7 ps in MoS2-pentacene junctions formed by vapor deposition of pentacene molecules onto MoS2 on SiO2. The B-exciton decay in WSe2 shows faster hole transfer rates for WSe2-pentacene heterojunctions, with a characteristic time of 7 ± 1 ps. The A-exciton in WSe2 also decays faster due to the presence of a pentacene overlayer; however, fitting the decay traces did not allow for the unambiguous assignment of the associated decay time. Our work provides important insights into excitonic dynamics in the growing field of TMDC-OS heterojunctions

    Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry

    No full text
    We demonstrate how substrate interfacial chemistry can be utilized to tailor the physical properties of single-crystalline molybdenum disulfide (MoS<sub>2</sub>) atomic-layers. Semiconducting, two-dimensional MoS<sub>2</sub> possesses unique properties that are promising for future optical and electrical applications for which the ability to tune its physical properties is essential. We use self-assembled monolayers with a variety of end termination chemistries to functionalize substrates and systematically study their influence on the physical properties of MoS<sub>2</sub>. Using electrical transport measurements, temperature-dependent photoluminescence spectroscopy, and empirical and first-principles calculations, we explore the possible mechanisms involved. Our data shows that combined interface-related effects of charge transfer, built-in molecular polarities, varied densities of defects, and remote interfacial phonons strongly modify the electrical and optical properties of MoS<sub>2</sub>. These findings can be used to effectively enhance or modulate the conductivity, field-effect mobility, and photoluminescence in MoS<sub>2</sub> monolayers, illustrating an approach for local and universal property modulations in two-dimensional atomic-layers

    Scalable Transfer of Suspended Two-Dimensional Single Crystals

    No full text
    Large-scale suspended architectures of various two-dimensional (2D) materials (MoS<sub>2</sub>, MoSe<sub>2</sub>, WS<sub>2</sub>, and graphene) are demonstrated on nanoscale patterned substrates with different physical and chemical surface properties, such as flexible polymer substrates (polydimethylsiloxane), rigid Si substrates, and rigid metal substrates (Au/Ag). This transfer method represents a generic, fast, clean, and scalable technique to suspend 2D atomic layers. The underlying principle behind this approach, which employs a capillary-force-free wet-contact printing method, was studied by characterizing the nanoscale solid–liquid–vapor interface of 2D layers with respect to different substrates. As a proof-of-concept, a photodetector of suspended MoS<sub>2</sub> has been demonstrated with significantly improved photosensitivity. This strategy could be extended to several other 2D material systems and open the pathway toward better optoelectronic and nanoelectromechnical systems
    corecore