49 research outputs found

    Effects of Aneuploidy on Genome Structure, Expression, and Interphase Organization in Arabidopsis thaliana

    Get PDF
    Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and progressive genome instability

    Distinct and concurrent pathways of Pol II-and Pol IV- dependent siRNA biogenesis at a repetitive trans-silencer locus in Arabidopsis thaliana

    Get PDF
    SUMMARY Short interfering RNAs (siRNAs) homologous to transcriptional regulatory regions can induce RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of target genes. In our system, siRNAs are produced by transcribing an inverted DNA repeat (IR) of enhancer sequences, yielding a hairpin RNA that is processed by several Dicer activities into siRNAs of 21-24 nt. Primarily 24-nt siRNAs trigger RdDM of the target enhancer in trans and TGS of a downstream GFP reporter gene. We analyzed siRNA accumulation from two different structural forms of a trans-silencer locus in which tandem repeats are embedded in the enhancer IR and distinguished distinct RNA polymerase II (Pol II)-and Pol IV-dependent pathways of siRNA biogenesis. At the original silencer locus, Pol-II transcription of the IR from a 35S promoter produces a hairpin RNA that is diced into abundant siRNAs of 21-24 nt. A silencer variant lacking the 35S promoter revealed a normally masked Pol IV-dependent pathway that produces low levels of 24-nt siRNAs from the tandem repeats. Both pathways operate concurrently at the original silencer locus. siRNAs accrue only from specific regions of the enhancer and embedded tandem repeat. Analysis of these sequences and endogenous tandem repeats producing siRNAs revealed the preferential accumulation of siRNAs at GC-rich regions containing methylated CG dinucleotides. In addition to supporting a correlation between base composition, DNA methylation and siRNA accumulation, our results highlight the complexity of siRNA biogenesis at repetitive loci and show that Pol II and Pol IV use different promoters to transcribe the same template

    AGO6 Functions in RNA-Mediated Transcriptional Gene Silencing in Shoot and Root Meristems in Arabidopsis thaliana

    Get PDF
    RNA-directed DNA methylation (RdDM) is a small interfering RNA (siRNA)-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO) proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points

    RNA-Mediated Silencing

    No full text
    <p>Short RNAs derived from Dicer cleavage of dsRNA are incorporated into multiprotein effector complexes, such as RISC and RITS (RNA-induced initiation of TGS) (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020133#pbio-0020133-Verdel1" target="_blank">Verdel et al. 2004</a>) to target mRNA degradation (RNAi/PTGS), translation inhibition, or TGS and genome modifications. ARGONAUTE (AGO) proteins (the name comes from a plant mutant [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020133#pbio-0020133-Bohmert1" target="_blank">Bohmert et al. 1998</a>]) bind short RNAs and ‘shepherd’ them to appropriate effector complexes (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020133#pbio-0020133-Carmell1" target="_blank">Carmell et al. 2002</a>). siRNAs originate from perfect RNA duplexes, which can be produced by RDR activity on ssRNA templates; miRNAs originate from imperfect RNA hairpins that are encoded in intergenic regions of plant and animal genomes. Functions are shown at the bottom. In addition to roles in transgene silencing, both TGS and RNAi/PTGS control genome parasites called transposons (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020133#pbio-0020133-Flavell1" target="_blank">Flavell 1994</a>; <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020133#pbio-0020133-Plasterk1" target="_blank">Plasterk 2002</a>). Genome modifications (DNA and histone methylation) can potentially be targeted by short RNAs that basepair to DNA or to nascent RNA synthesized from the target gene (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020133#pbio-0020133-Grewal1" target="_blank">Grewal and Moazed 2003</a>). Target nucleic acids are shown in blue, short RNAs in red, proteins and enzyme complexes as ovals.</p

    Early Examples of Gene Silencing in Transgenic Plants

    No full text
    <p>TGS: Normally when two plants harboring separate transgenes encoding resistance to kanamycin (kan) or hygromycin (hyg), respectively, are crossed, 50% of the progeny are resistant to the individual antibiotics and 25% are resistant to a combination of both (top). In cases of silencing, expression of the KAN marker is extinguished in the presence of the HYG marker, as indicated by only 25% kan resistance and no double resistance (middle). PTGS: Transformation of wild-type petunia (bottom left) with a transgene encoding a pigment protein can lead to loss of pigment (white areas) owing to cosuppression of the transgene and homologous endogenous plant gene. (Photos on the left and in the middle were provided by Jan Kooter and on the right were provided by Natalie Doetsch and Rich Jorgensen.)</p

    Complete Sequence and Comparative Analysis of the Chloroplast Genome of Coconut Palm (<i>Cocos nucifera</i>)

    Get PDF
    <div><p>Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (<i>Cocos nucifera</i> L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.</p></div

    The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation.

    Get PDF
    RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated single stranded DNA. As the only protein identified so far that interacts directly with DRM2, RDM1 plays a pivotal role in the RdDM mechanism by linking the de novo DNA methyltransferase activity to AGO4, which binds short interfering RNAs (siRNAs) that presumably base-pair with Pol II or Pol V scaffold transcripts synthesized at target loci. RDM1 also acts together with the chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1 (DRD1) and the structural-maintenance-of-chromosomes solo hinge protein DEFECTIVE IN MERISTEM SILENCING3 (DMS3) to form the DDR complex, which facilitates synthesis of Pol V scaffold transcripts. The manner in which RDM1 acts in both the DDR complex and as a factor bridging DRM2 and AGO4 remains unclear. RDM1 contains no known protein domains but a prior structural analysis suggested distinct regions that create a hydrophobic pocket and promote homodimer formation, respectively. We have tested several mutated forms of RDM1 altered in the predicted pocket and dimerization regions for their ability to complement defects in RdDM and transcriptional gene silencing, support synthesis of Pol V transcripts, form homodimers, and interact with DMS3. Our results indicate that the ability to form homodimers is essential for RDM1 to function fully in the RdDM pathway and may be particularly important during the de novo methylation step
    corecore