3 research outputs found

    Smoothing Properties of Semigroups for Dirichlet Operators of Gibbs Measures

    Get PDF
    AbstractIn this paper is investigated the special class of elliptic differential second-order operators with an infinite number of variables with the property of a finite radius of dependence for variables. This class is formed by the Dirichlet operators associated with energy forms of Gibbs measures on compact Riemannian manifolds with a finite radius of interaction. Using this property we represent the Dirichlet operator as a finite sum of self-adjoint operators with independent variables and prove that the Dirichlet operator semigroups preserve the specially constructed scales of continuously differentiable functions. We also obtain that these semigroups raise the smoothness of initial functions

    Upper bounds on second order operators, acting on metric function

    No full text
    We prove upper bounds on the general second order operator acting on metric function. The suggested approach does not use traditional formulas for deviations of geodesics and Jacobi fields construction and leads to the manifolds generalization of the classical coercitivity and dissipativity conditions for diffusion equations

    Asymptotic solutions of the Dirichlet problem for the heat equation at a characteristic point

    No full text
    The Dirichlet problem for the heat equation in a bounded domain G⊂Rn+1 is characteristic because there are boundary points at which the boundary touches a characteristic hyperplane t=c, where c is a constant. For the first time, necessary and sufficient conditions on the boundary guaranteeing that the solution is continuous up to the characteristic point were established by Petrovskii (1934) under the assumption that the Dirichlet data are continuous. The appearance of Petrovskii’s paper was stimulated by the existing interest to the investigation of general boundary-value problems for parabolic equations in bounded domains. We contribute to the study of this problem by finding a formal solution of the Dirichlet problem for the heat equation in a neighborhood of a cuspidal characteristic boundary point and analyzing its asymptotic behavior.Задача Діріхлє для рівняння тєплопровідності в обмеженій області G⊂Rn+1 є характеристичною, оскільки існують граничні точки, в яких границя є дотичною до характеристичної гіперплощини t=c, де c є сталою. I. Г. Петров-ський (1934) уперше встановив необхідні та достатні умови на границю, що гарантують неперервність розв'язку аж до характеристичної точки за умови, що дані Діріхле є неперервними. Поява даної роботи була викликана постійним інтересом до вивчення загальних граничних задач для рівнянь параболічного типу в обмежених областях. Наш внесок у вивчення цієї проблеми полягає в побудові формального розв'язку задачі Діріхле для рівняння теплопровідності в околі гострокінцевої характеристичної граничної точки та дослідженні його асимптотичного характеру
    corecore