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In this paper is investigated the special class of elliptic differential second-order
operators with an infinite number of variables with the property of a finite radius
of dependence for variables. This class is formed by the Dirichlet operators
associated with energy forms of Gibbs measures on compact Riemannian manifolds
with a finite radius of interaction. Using this property we represent the Dirichlet
operator as a finite sum of self-adjoint operators with independent variables and
prove that the Dirichlet operator semigroups preserve the specially constructed
scales of continuously differentiable functions. We also obtain that these semigroups
raise the smoothness of initial functions. @ 1995 Academic Press, Inc.

1. INTRODUCTION

The present paper is dedicated to the investigation of semigroups for an
important class of elliptic differential operators, which are known as the
Dirichlet operators of probability measures on infinite-dimensional spaces.
These operators are of particular interest because they are associated with
energy Dirichlet forms and, interpretated as quantum Hamiltonians of
corresponding physical systems, have a wide range of applications to the
problems of mathematical physics, quantum mechanics, and quantum field
theory [16, S, 4].

The theory of energy forms of smooth measures on infinite-dimensional
spaces and corresponding differential operators is an intensively developing
field of mathematics. Possibly the most complete citations and discussion
of different directions in this field can be found in monographs [16, 12, 8]
and surveys [5,9].
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An investigation of Gibbs measures on the infinite product of finite-
dimensional spaces not only is of special interest in connection with the
important applications to lattice particle systems, but also is motivated
by the possibility of deriving information about the properties of corre-
sponding Dirichlet operators. For example, the conditions on the
logarithmic Sobolev inequality and its connection with the Dobrushin-
Schlosman mixing condition [13, 24, 23], the conditions on its essential
self-adjointness, and the ergodicity of its semigroup [2, 3] were obtained.

In this paper we consider the class of Dirichlet operators for which suf-
ficiently complete information about smoothing properties of corresponding
semigroups which are analogs of similar properties in the finite-dimensional
case can be obtained. We restrict our investigations to differential operators
with an infinite number of variables with the additional property of a finite
radius of dependence for variables appearing in the differential expression.

Such operators are associated with Gibbs measures on the countable
product of compact Riemannian manifolds. The main emphasis in this
paper is on the development of methods of semigroup theory which are
intrinsic for the Dirichlet operators of Gibbs measures.

We provide an approach to the investigation of corresponding semi-
groups in which it is not necessary to obtain preliminary information about
the structure of the Gibbs measures simplex. This is possible because the
information about the conditional Gibbs measures in finite volumes of the
lattice Z<¢ is completely reflected in the coefficients of the Dirichlet
operators (see Theorem 3.2).

In this paper we continue the investigations commenced in [7] and
initiated by the paper of Roelly and Zessin [22], where the characteriza-
tion of the Gibbs measure on the space C[0, 1]% through the special
structure integration by parts formula was provided.

In Sections 2 and 3 we outline the results of [7] and propose a charac-
terization of the Gibbs measures simplex in terms of Hermitian realizations
for a special differential operator (Definition 3.1),

Hpu=%% {-Ak+ <Vk< > ¢A>,Vk>},

kezd Aked

acting on smooth cylinder functions Cj;,(MZd).
In Section 4 we provide a representation of the Dirichlet operator H ,. as
a finite sum of block operators H; with independent variables (see (4.1)).
This representation is intimately linked with the special role which systems
with a finite radius of interaction play in modern mathematical physics.
The operators H,; have the important property of smooth solvability of
the parabolic Cauchy problem (Theorem 4.1) in the space C=,(MZ"). This

cyl
gives the result of essential self-adjointness for these block operators
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(Corollary 4.2). Therefore the question of self-adjointness for the operator
H 4 is reduced to the problem of self-adjointness for the finite sum of self-
adjoint operators H,. The difficulty which arises from the fact that these
operators are not comparable is overcome by application of the Da Prato
and Grisvard theorem [ 117 (see Theorem 4.3).

In Sections 5-8 we develop the investigations started in [6] and [1]. We
study the action of Dirichlet operator semigroups in the special scales of
spaces of smooth functions on the infinite product of manifolds.

In Section 5 we construct these scales and obtain the necessary
preliminary information about the quasi-accretivity for operator H .
(Theorems 5.6 and 5.8).

The results of Section 6 are rather technical; we apply them to the proof
of quasi-accretivity in Section 5 and to the proof of the smoothing proper-
ties in Theorems 8.5 and 8.6.

In Section 7 we find the conditions for essential self-adjointness of the
Dirichlet operator H,. in the space of square integrable functions with
respect to the Gibbs measure (Theorem 7.4). Using the multiplicative for-
mula for semigroups we reconstruct the properties of dynamics generated
by H,. in terms of the properties of local dynamics (Theorem 7.5). As a
consequence we obtain the main result of this section that the action of the
semigroup exp(—tH ,.) preserves each space from the scales of smooth func-
tions constructed in Section 5. Note that the similar result was announced
in [13, Thm. 2.2] with a brief sketch of the idea of the proof in terms of
Ito stochastic differential equations.

In Section 8 we investigate the smoothing properties of Dirichlet operator
semigroups in special scales of spaces. We prove that the semigroup of a
Dirichlet operator acts from the space of finitely differentiable functions
into the Frechet space of infinitely differentiable functions (Theorems 8.5
and 8.6). Note the interesting intrinsic moment in which the representation
of Dirichlet operator H ,, again plays a role when we find the conditions
on differentiation of the maximum and once again apply the multiplicative
representation for the semigroup of operator H ..

In the Appendix we give a sketch of the proof for a simple generalization
of the Da Prato-Grisvard theorem [11] to the case of a finite number of
linear operators.

2. INTEGRATION BY PARTS CHARACTERIZATION OF GIBBS MEASURES

Here we provide a characterization of Gibbs measures on the countable
product of manifolds in terms of the integration-by-parts formula.

Consider a d-dimensional lattice Z“. To each point k = (k,, .., k,) e Z¢
we let correspond a smooth, compact, complete, connected Riemannian
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manifold M, with metric tensor g’ and Riemannian measure 0,: do, =
(det g"*')'2 dx in local coordinates on M.

The inner scalar product of tensors ¥ and v on manifold M, is defined
by the expression in local coordinates

I3 q
<u,v> TPAM; = X gfzj) X g:;(h) uill..t-i’;qv-?l '-'-4-jqu,
s=1 t=1
where g, = {g{;} denotes the inverse to the metric tensor on manifold
M, . The norm of the tensor field |u] = (<u, u>)"? is defined in the same
way.

Let V, denote the operator of covariant differentiation acting on tensor
fields on M,. Correspondingly, let A4, denote the Laplace-Beltrami
operator on tensors on M.

For a finite or infinite subset A€ Z%, |4} < oo, we preserve the following
notations:

M'= X M,, Xg= {Xpthesr Xp€M.
ke
We denote by #, the Borel (or Tichonov, for |A4| = o) g-algebra on the
product of manifolds M .

Consider the family of interactive potentials {®,, |4| < cc} in the finite

subsets 4 < Z satisfying the following assumptions:

1. Function @, is measurable with respect to the os-algebra %, and
is a smooth function @ ,e C*(M™*).

2. The finite radius of interaction
Iry>0:Y4c Z¢ : diam(A4) > ry,=> P, =0. (2.1
3. The transitional invariantness
M, =M, 0, =0, 1, Q=P 4,
for every k, A = Z*, where 1, denotes the shift on vector ke Z%.

Now we introduce the Gibbs measure on M in the following way. Let
V , denote the potential of volume A < Z¢,

Valx ly)= Z D ,(z), (2.2)

AnA#

where z= (x4, y4) and A°=Z“\ A. Put

Zy(1)=] exp(=Vxsly) X doylxe)

ke
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We define the Gibbs measure in a finite volume AcZ¢ with fixed
boundary condition ye M?" as

—Va da (x;). .
Zi P VAl X do(). - (23)

Due to Conditions 1, 2 in (2.1) we have

du,(x|y)=

0<Z,(y)<w

for any A= 279 |A|<o0, and ye M, so these measures are correctly
defined.

Denote by E , the expectation with respect to the measure u ,. Then due
to (2.3) we have the next consistency condition:

ELEL=E}, A,04,. (2.4)

DEFINITION 2.1.  The probability measure u on M is a Gibbs one with
local specifications {u,, 4= Z“} iff

wE;) =pn, (2.5)
where u(f)= | fdu.

We adopt the notation pe%{u,} for Gibbs measures with local
specifications {u,}.

Remark. The condition (2.5) is equivalent to the assumption that the
family {u,} forms the set of conditional measures for measure y with
respect to o-algebras %, [14, 18, 19].

Henceforth we suppose that the set of Gibbs measures is nonempty:

G{ua # 3.

For example, this is satisfied under conditions 1-3 in (2.1) (see [19]).

Let C* (M?*') denote the set of functions f which are cylindrical on
lattice Z there is a finite subset A,= Z7 such that f is measurable with
respect to the g-algebra #, and fe C*(M*). The space of smooth cylinder
functions CJ, (M %) is defined in the same way.

We call the minimal set 4, which satisfies the conditions above the

support of cylindricity for function f

supp f=min{A : fis #,-measurable}. (2.6)

cyl

The next theorem proposes a characterization of the class of Gibbs
measures in terms of the integration-by-parts formula [7]. Firstly such
characterization of Gibbs measures in the case of linear spin systems was
proved in [22].
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THEOREM 2.2. Suppose that the interactive potentials @ , satisfy Condi-
tions 1,2 in (2.1). The probability measure u is a Gibbs one with local
specifications {u,} (ie, pe%{u,}) if and only if the integration-by-paris
formula,

f Y <h,Viu> du
M

d
z kezd

=j Y (< ViV = divy he) du (2.7)

M kezd

holds for ue C= (M) and h,e C' ,(M%, TM,) with values in the space

cyl cyl
tangent to M, , ke Z%. Here div, denotes the divergence operator on vector

fields on M, and
Vi= 5 &, (2.8)
AkeA
denotes the potential of the set {k}eZ? as in (2.2).

Proof. (1) First note that all integrals in (2.7) are finite due to the
cylindricity of u, {h,}, s and p(M?)=1.
As the measure

du(x; | y) = exp(—Vi(x; | y)) da.(x;)

1
Z(y)

is a perturbation of the Riemannian volume o, by smooth density, we can
write next the integration-by-parts formula

E;[(div; k,)u]
=E[ <m0V V(1 y)>u- | p)= <hi(-), V(- y) > 1
Using the definition of the Gibbs measure we have
p((div;h)u)=pwE; [(div,h)ul)=pu(<h, V.V >u— <h,Vau>).

Summing up on ie Z¢ we obtain the “if” part proved.
gup p p

(2) Consider the function f, which is measurable with respect to
o-algebra F5. . Put u=f-u,, where u; € CC’;I(MZ‘]) such that supp,, ;>
{i} (see (2.6)). Choosing in (2.7) h, =0, k # i, we have

f S<h, V> dy=j FU<hy, VoV, —div, b}, du.
M2 M2
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As fis an arbitrary smooth cylindrical function on M?* we obtain that the
conditional measure u(-| %) satisfies the identity

w(div, h;) u; | Fiiye) = M<h, V.Vi=u,— <hi, Vi > | -gF{i}C)
= —u(e"<h, V. >(e V)| Fiiye)

Let /i) denote the regular image of the conditional measure u(-| %, )}()
under the projection pr, on M,. The procedure for construction of conditional
expectations for measure y implies that for p-almost all y e M?% we have

u(- | Za) ()= A7 ®0,.(+),
where y°= {3y}« ;- Then we obtain that
A7 ((div, h)u) = “/1;“(6‘/' <h;, Vi (e ).
Setting u, =e"q,, dii,(-| y)=e€""di}, we have
[ @ivn)gdiCin=—] <, Va>diiy. (29
M; M;
This identity completely characterizes the Riemannian volume on M,
[10]; therefore
dii(x; | y)=C(y) do(x,)
and
diif (-)=e"""C(y) do;(-).
As fi} i3 a probability measure we have
C =] e do ()
M,

a(-1y) and the measure u is a Gibbs one (see

therefore 4} (-)=pu;
23). 1

Definition 2.1 an

3. HERMITIAN REALIZATIONS FOR FORMAL DIFFERENTIAL OPERATORS

DEFINITION 3.1. Let Q = 7% |Q| < o0, be an arbitrary subset of the lattice
Z°. Consider the family of formal differential expressions acting on CZ, (M 7,

H,= Z H,, 3.1)
keQ
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where

Hy=-34,+i<V,V,,V, > (3.2)

and V, =% ., . P
Note that Q can coincide with lattice Z.

Under Conditions 1,2 in (2.1) the operators {H,, |Q| <o} are
correctly defined on the space CZ, (M 2.

Ve CE(MINNVQcZ|0I<0;  HyfeCE(M™).

cyl cyl

The next theorem is a simple consequence of the integration by parts
characterization of Gibbs measures (Theorem 2.2).

THEOREM 3.2.  Suppose that the interactive potentials {® 4} satisfy Con-
ditions 1,2 in (2.1). Then the family of differential operators {H,, |Q| < o0}
in (3.2) with domain C:;I(Mzd) is Hermitian in L,(M %", u) if and only if the
measure u is a Gibbs one with local specifications {u,} (ie., ueG{u,})

Moreover, the operators {H,, |Q| < oo} are Dirichlet in the sense that

(HQu,v)Lm,zéf Y <V, Vo> dy
MY 0

on u,ve Co(M™).

Proof. 1. Theorem 2.2 implies that for any pe %{u,} we have
j <V, u, Vo> d,u:f v{i—d u+ <V, V,,Vou>}du;
M M

therefore each operator {H,, |Q| < oo} is a Dirichlet and Hermitian one in
the space L,(M?’ p).

2. The statement of Theorem 2.2 is also valid for the special choice of
vector fields A, =V, for y e C= (M%), Equation (2.9) adopts the form

cyl

[ ewyodu=-]

My M,

<V, Vv > djiy,
k

which is another possible characterization of Riemannian volume. ||

Remark 3.3. Theorem 3.2 proposes a functional analytic approach to
the interpretation of Gibbs measures in terms of differential operators, in
contrast to the stochastic approach used in Definition 2.1.
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Consider the formal differential operator acting on Cé’;(MZd):

Ho==1 3 441 T <V T @)V G3)

kezd kezd Arke A

The first question which arises in the infinite-dimensional situation is
when the operator H,, could be realized as a Hermitian operator in some
space L,(M % 4). In the finite-dimensional situation this question is trivial
because there is no problem of uniqueness for the finite-dimensional
Lebesgue measure.

The principal infinite-dimensional effect is that the set of all Hermitian
realizations for operator (3.3) could be completely described by the set of
all Gibbs measures ¥ {u,}. In the particular case in which ¥{u,} is an
empty set we have that the differential expression H,. could never be
realized as a Hermitian operator.

4. DIRICHLET OPERATORS OF GIBBS MEASURES AS A FINITE SUM
OF OPERATORS WITH INDEPENDENT VARIABLES

Below we represent the Dirichlet operator H,, (3.1) of Gibbs measure as
a finite sum of block operators H;, and prove the self-adjointness of these
block operators in L,(M%, u) pue% {u,}. This representation of a
Dirichlet operator is based on the following special splitting of lattice Z,

Let us set B=[1,a]“n Z for a ae N such that a > 3r,, where r, is the
interactive radius (see Condition 2 in (2.1)).

Denote by %4, = #. .o, the set

%(0)= U TkB,

ke(2azy

where 1, is a shift on vector ke Z“ (See Fig. 1.)
Fori=(i, .., 1,), i,€ {0, 1}, and s =1, .., d, denote by %, =%, ..., the
shift of the set %, on the vector (i,a, .., i;a)e Z*

”74:') =T(ia.0,.,0) """ T(0, .., 0, iga) 0240)-

The sets {%,,), i€ {0,1}} form a finite subdivision of the lattice Z on
infinite non-interacting subsets.

The splitting of the lattice Z¢ results in the decomposition of the
Dirichlet operators {H,, |Q| < oo} (3.1) as finite sum of block operators
Hgy,yon CZ (M™,

cyl

Ho= 3, Hyu, (4.1)

ie {0,114
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FiG. 1. The set %, for two-dimensional lattice Z¢, d=2. This picture describes the sets
which split the lattice Z% This splitting results in the representation of the Dirichlet operator
(4.1) as a finites sum of operators with independent variables.

where

Hy,y= Y Hg. 4.2)

kednm@

The formula (4.1) represents the infinite-dimensional operator with
interaction H, as a finite sum of operators H,;, with an infinite number of
independent variables.

THEOREM 4.1. Let &, satisfy Conditions 1,2 in (2.1). Then for all
i€ {0, 1} and for all {Q<Z% |Q|< 0} the Cauchy problem

of(t, x)
“ar How f
(4.3)
J(O, x)y=fo(x)
is smoothly solved in the space C;;,(MZ"); ie., for every fy € C:;,(MZJ) the

solution f(z, - )e C‘C’;‘,(Mzd), t>0.

Proof. Put (i;,..,i;)=(0,..,0); the other situations are treated
similarly.

580/127,2-10
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Due to Condition 2 in (2.1) on the finiteness of the interactive radius, the
sub-blocks of operator H o, commute for k #k,, k,, k, € (2aZ)*:

[:HQr‘\rkIEs HQr\rAZE] =0

This enables us to localize the Cauchy problem (4.3) as follows.
The cylindricity of function f, € Cj;l(MZ ) gives the existence of a finite

set S < (2aZ)* such that for A=), 1B we have

Uy > A > U, QA supp fo.

cyl

Therefore the solution of the Cauchy problem (4.3) can be represented
on the space C. ,(M‘7Z ) as the action of the semigroup for an operator with
independent varldb]es

flt.x)=]] exp{ —tH 5.0} fo(x).

keS

Tl~1en for all ¢ > 0 the support of cylindricity supp,,, (¢, x) belongs to the
set 4 which is in the ry-vicinity of AU SUPPeyr fo-

Therefore the Cauchy problem is localized on the finite product of com-
pact Riemannian manifolds and could be smoothly solved in the space
C*(M™). So assumptions 1 and 2 in (2.1) imply that

Vi>0,  f(1, - YeCT(M7)

due to the standard finite-dimensional criterions (see, for example, [15,
Chap. 9, §6, Thm.8]). §

COROLLARY 4.2. Under Conditions1 and 2 on interactive potentials
{@,} in (2.1) we have that

Vie {0,1}4 VQ<=Z% |Q|<oo, and Vue%{u,} the operator
H g, in (4.2) is essentially self-adjoint in space L,(M*, y) with
the essential domain of smooth cylinder functions C2,(M ),

Proof. Consider the Cauchy problem (4.3). Let P2 denote the
operator which by the initial value fye C*, (M%) gives the solution
f(t, x)e Cx (M.

cyl

cyl
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Due to the inequality

d . ‘
Efwlf(r, x))* du= "2JM14 <HQ(:'|P1Q(” 0 POy > dyu

:-Lﬂd Z (Vi Pe%|? du<0
‘ ke Q)

we obtain that
“PIQ“) 0” Ly < ”f()“ Ly>

so there is a closure P, from the dense domain C;’;,(MZ") in L,(M% p),
and P, is a bounded operator.
Operators P, are multiplicative, P,, ,= P, P, (this is checked only on

CZ(M?)), Py=1d, and they are strongly continuous:
Vfoe CL(M ,) we have P, fo— P f, in C"(M7) when 71—,
n=0 (see the Theorem 4.1 proof for the definition of A4). Due
to the criterion of strong convergence and the estimate
1/ L, < 1 f1l eneprny, We obtain that P, is strongly continuous in
Lz(MZd, i)

Therefore we obtain the existence of generator 4: P, =exp(—14) and,
because P, preserves C'C’;l(M"/), we have from the criterion [21, Vol. 2,
Theorem X.49] that C;§.,(M”d) forms the essential domain for operator 4.

But

oyl r> 0+ 4

=L,— lim (-P'f—‘)t_fﬂ>=Af0

Hofo=CL(M*)~ lim <—Jli.r_>;f_iﬂ>

t— 0+

due to P,1,. 5ty = P2 therefore we obtain the essential self-adjointness
<y
of Hy).

Corollary 4.2 and Theorem 4.1 result in the representation of operator
H as a finite sum of essentially self-adjoint operators H,, (4.1). But the
operators H,;, are not comparable; therefore the standard criterions on
the essential self-adjointness for the finite sum of self-adjoint operators do
not work.

This difficulty is overcome by a simple generalization of the Da Prato
and Grisvard theorem [11].
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THEOREM 4.3. Let A,, .., A, be closed linear operators in Banach
space X satisfying the estimates

N2+ A) gy < V(A —a) (44)

for A>a, 0,>0,i=1,.. n

Suppose that there exists a Banach space Y which is continuously and
densely imbedded into X. Let Y also be continuously and densely imbedded
into 2(A?) with graph norm, i=1, ..., n.

Suppose that the restrictions of operators A; on the space Y, A; Ty, satisfy
the estimates

1A+ 4,70 i S UG — B) (4.3)

for A=, B;>0,i=1,.,n.

Then operator L= A, + --- + A, with domain Z(L)=Y has closure L in
X which is a generator of a strongly continuous semigroup.

Moreover, there is the next multiplicative formula for semigroups,

GXp(—IZ)=X—S— lim (ﬁ GXp(_éA.))m “6)

meo o\
i=1

uniformly on te [0, T], T>0.

Proof. See Theorem A.S in the Appendix (when operator B=0). |

5. SPACES OF QUASI-ACCRETIVITY FOR THE DIRICHELT OPERATORS

In this section we construct the scales {&g}, {Z(p,«)} of spaces of
differentiable functions on the infinite product of manifolds M 7% in which
the operators {H,, |Q| <o} are uniformly on Q « Z“ quasi-accretive in
the sense of the next estimate:

IC,: Re< (Hy+ Cp)u, [,> =0,

Here ue C;.’;,(Ml") and /, is a tangent functional to u in the space E from
these scales.

The spaces {6g} and {Z(p, )} are constructed as a closure of C:;,(Mzd)
with respect to the certain sequence of seminorms (see Definitions 5.5 and
5.7) and would play the role of spaces X and Y from Theorem 4.3. Further,
we obtain different properties for the semigroups of Dirichlet operators
{exp(—tH,), Q<= Z% |Q| <} (see Theorems 5.6, 5.8, 7.2, 7.4, 7.5, 8.4,
8.5, 8.7).
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DEeFINITION 5.1.  The set of nonnegative numbers p= {p, }, ., is called
the weight iff for some r,>0 there is a constant M, >0 such that
Vk,jeZ*: |k — jl <rq and py-p,#0:

e Mr<|pi/pl <e™ 6.1

The space of multiweights P is introduced as a space of finite unordered
sets of weights

1 !
0=1p,...p}eP,

where /> 1 is the length of multiweight 6:/=/(8). Correspondingly, let
{(@)=max, o /(0) denote the length of the finite array of multiweights
e=1{0,,..,0,}cP.

We denote by nul(f) the set of points from Z“ where some weight of

multiweight § = {ll), . ]I)} vanishes:
1) ;
nul(@)={ ) {kez?:p,=0}. (5.2)
i=1
Correspondingly, let nul(@) denote next set
nul(@)= { ) nul(9).

fge@

Note that the weight p, = ¢“'*' for some ¢ > 0 satisfies condition (5.1).

DEFINITION 5.2.  We introduce the relation of partial order between two
1 !
multiweights 8 = (p, ..., p) € 7 in the following way:

!
0 <m iff /(8) = I(n), there is a permutation ¢(n)= {‘ll, . q}, and
3C, , such that Vke Z4, Vi=1, ., [(0), px < Cy Q.

The finite arrays of multiweights &, ¥ < P satisfy @ < ¥ if
V0 e @3n = n(0) e ¥such that 0 < 1.

The corresponding constant Cgy w =max, e Co o)
DeFINITION 5.3. For §eP, xe M*, and ue CZ% (M%), denote by |-,
the following expression:

1,2

|u(x)|(,=< Z lllk/"'ll’k, |Vk,"'Vk1u(x)|2> . (5.4)

ki... kiezd
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Here V, denotes the covariant derivative on manifold M, and |-| denotes
the Riemannian norm of the corresponding tensor field.
Let (-, -)o denote the bilinear form induced by |-|,:

{ 1
(u(x), v(x))y= Z P, Piy - < Vk/ © ‘Vk, u(x), Vk/ - 'Vkll’(x) >
ki, kiezd
(5.5)
For =g we have that |u(, x)| o =lu(x)| and correspondingly

(u(x). v(x)) 5 = u(x) v(x).
Note that inequality 8 < 7 implies

|u('\')|li<C{!‘r(|u(’r)|n (5.6)

forall xe M% ue C% (M%).

cyl

}. Denote by gen(f)cP

=~

1
DEFINITION 5.4. Consider e P, 6= {p, ...,
the set of multiweights

! st ! !
gen(0 U (PPPos Po Povs Py Poue Pl (5.7)

st 5 !
where weight pp= {px P« }sc 2
In the same way let gen(@) denote the set

gen(@)= | gen(6)

e @

The finite array of multiweights ©@={6,,..,0,}cP, |@|=m, is called
quasiaccretive iff

gen(@) < 0, (5.8)

ie, V8e®:/(6)>1 and Vrnegen(f) 30'(n)e @, {(m)=1{(0'(xn)) and there is
a permutation ¢(0'(n)) of 0" such that n < @(8'(n)).

Later we need the constants

My=max M, (5.9)
pet
C6=Cgen(6)|,9a (510)

where M, and Cg4 , were introduced in (5.1) and (5.6).
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DEFINITION 5.5.  Let @ be the array of multiweights @ = {6, .., 6,,} = P.
We define the Banach space & of smooth functions on the infinite product

of manifolds M?" as a closure of CZ (M %') in the norm

lullg= sup ( max |u(x)|(,>, (5.11)

cem¥ \Be@u (@}

where |u(x)|, was introduced in (5.4).
Note that for ue C:;‘(MZ") lullg < oo for @ =P, || < due to the
compactness of M.

Remarks. (1) The important moment in the definition of &5 is the
absence of factorization for CC"QI(MZJ) in norm | -|| . That is because || || 4
restricted on C*(M*), |A| < o0, is equivalent to the standard Riemannian
norm on space C"(M™*), n=max,_, I(0).

(2) For ® = the corresponding space &, is a closure of Cc‘j;‘,(MZ'l)
in the norm |lull 5 =sup, _ 20 [u(x)|.

(3) The set of quasi-accretive arrays is non-empty: fix 6=
1 {
{p, ... p} € P. Then the array

1He)
Gen(0) = | ) gen'(6) (5.12)

i=0

is a quasi-accretive one because it contains the set gen(¢) for any
# e Gen(f). Here gen“(9)=gen* '(gen(#)). Correspondingly the set
Gen(@)=1{J,._, Gen(0) is defined.

THEOREM 5.6. Let the interactive potentials {® ,\ satisfy Conditions 1-3
in (2.1) and let O be a quasi-accretive array of multiweights, |@| < . Then
the Banach space &y is a space of uniform on Qc Z“\nul(@) guasi-
accretivity for the operators {H,, Q < Z\nul(®), |Q| <} (3.1):

1% 2090 2\ nul(0), |Q| < o0 Yue C% (M%)
Re < (Ho+ Do)u, 1, > 4,20. (5.13)

Here /, denotes the tangent functional to u in &,.

Remark. For example, for the quasi-accretive array © with nul(@)= &
we have the uniform on lattice Z“ quasi-accretivity for operators
{Hy, QI <o}. But we give the proof of this result also in the case
Q = Z*\nul(@) because it is used in the proof of smoothing properties in
Theorems 8.5 and 8.6.
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Proof. Recall that for ue C%,(M%);

cyl

lullo= sup max |u(x)|,,
e M 0O (D)

where |-}, were introduced in (5.4).
Then due to the compactness of M 7" the norm is attained for some

1
multiweight 6 = {p, .., p} €@ U & and point xoe M %':
lulle = Iu(xo)ln-

It is simple that the tangent in space &, functional to function
ue CL(M?) equals

LAS) = (ulxo), f(x0))os

which follows from /, () = ||u||2 and the Cauchy inequality (see also (5.5)).
Due to Theorem 6.1 we have that VQ < Z“\nul(®), |Q| € w:

Re l,(Hou) = Re(u(x,), Hou(xo))o
> + 3 Hlu(xo)|s+ |u(x,) fgw)‘go Iu(XO)lzGen(Gj’

1
where 5,(0) = {[l) [I) 1,} for weight 6= {p, .., ]Il} and weight 1, is equal
to

1, k
{lg}k={0’ k;g.

The first and second terms above are non-negative because x, is a
maximum point. The third term is simply estimated from

|u(x0)|Gen(H) < C[f(;e) flulle.
So we have that
Re l,(Hou) = —CL2 max 9, |ul 3.
e

See the definition of Cg in (5.10). |

Now we give another important example of spaces in which operators
{H,, |Q| < oo} are quasi-accretive. We need these spaces later for checking
the conditions of Theorem 4.3.

DEerFINITION 5.7. Let p={ps}icz¢» Px=1, be some weight (Defini-
tion 5.1). Fix vector {a,€(0, 1), i=1,.,n 27_, a;,=1} for some neN.
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The space Z(p, «) is defined as a closure of Cﬁ;,(MZ") in the norm

llu||M= sup |u(x)| v sup max q,(u), (5.14)

xe MZ xeMZ

where max is taken over all possible k = 1, .., n, all possible decompositions
of number £,

J
S:{s,e {1, 2} such that ) s,-=k},
i=1

and subdivisions I'= {y,}/_

, of set {1, .., n} satisfying

0y, =g, i#l U y.=1{1,.,n}, Iy = s;.

Here g, (1), ¥ =y (k, S, I') admits the representation

1/2
qw(u)=( Y pf;---pfq|Tf:-~T.’:;u|2(x)), (5.15)

ky, .. kjeZ4

where f§; = Zmer‘ %y -
The operators T* are defined by the formulas

T*u=V,u, s=1,

TXu=A4,u, s=2,

where V, and 4, denote the covariant derivative and the Laplace—Beltrami
operator on tensors on M,. Note that the order of differentiation in
Z(p, x) equals n=n(a).

The next theorem is an analogue of Theorem 5.6 for the spaces
{Z(p, )}

THEOREM S5.8. Let {®,} satisfy Conditions1-3 in (2.1). Then space
Z(p, 1) is a space of uniform quasi-accretivity on the lattice for operators
{Hy,, |0 < 0} e,

32,,20  YQ<Z4|Q|<ocVue CE (M),

cyl

Re< (Ho+2, )it 1> 50y 20. (5.16)

Here |, denotes the tangent functional to u in % (p, o).
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Proof. This is omitted because it compietely follows the verification
scheme for Theorem 5.6 (see also Theorem 6.1). The proof is contained in
[6]and in [1]. 1

The next theorem controls the condition Y « %(A4?) of Theorem 4.3.

THEOREM 5.9. Let interactive potentials {® ,} satisfy Conditions 1-3 in
(2.1).
Consider the Banach space X for which we permit one of the following
possibilities:
1. X =& for quasi-accretive array @ < [P;
2. X=Z(p, 2) for some p, %;
3. X=L,(M?%, u) for some peG{u }.

Then there is space Y=%(q, ), Y= X, such that uniformly on Qc 7%
Q| < oc, we have the estimate

max(flull y, [Houll x) < Cy y llully

for ue C%(M*).

cyl

Proof. (1) First consider the case X=46,. Due to the finiteness of
array © there is an exponentially growing weight p= {p,},_ (e,
P ~e** k| - oo, M >0) that majorizes all weights of the array ©:

¥O={r, ..t} €@, Vi=1,..,(6)
, (5.17)
r, <. keZ"

Put o= {o;=1/(n+2)}7*? and p=(p)"** Then (5.17) and Defini-

i=1

tions 5.2, 5.4, and 5.7 imply that
lulle < const |u], ,

and we only have to prove the statement for X = #(p, o).
(2) Consider X =2Z(p, 2). Due to (5.14) we have

[Hyull,,= sup {|Houl v maxq,(H,u)}.

xe i

Then |H,u| is simply estimated from above by

1/2 172 1/2
(Z l/pi> [( ) pilAkuP) +max IVkal-< 2 P IVkulz) ]

kezd kesd kez¢
(5.18)
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In the same way

1/2
atHon=( T atnITs e TG

ky, .. kje 24

<< 3 l/pk>12

kezd

1/2
I:( Z Pi'l-'-lll’-jpk,”ITff,‘“’Tf,’AkH,ulz)

Koo by, kj+lel"

+< Y Pl PP, TS T
3

l"'k/J‘/HEZd

1/2
x-<Vka,Vku>|2> } (5.19)

We introduce the new weight q=(p)"** and the power weight § with
B,=1/(n+2), i=1,..,n+2, and construct the space Z(q, f) (see Defini-
tion 5.7). It is obvious that |u|,, and the first terms in (5.18) and (5.19)
are estimated by [[u(, 4.

The second terms with |T%'---TY <V, V,,V,u>|* can be estimated
from above by const [lu||, ,. We only have to repeat the steps from (6.20)
to the end of the Theorem 6.1 proof using the relations

T \(fg)=/T g+ 8T,/
T,(/8)=/T,g+ T, f+2<T,f, T\ g>

(see Definition 5.7 for T, ).
(3) For X= Lz(Mﬂ, u) the estimate is trivial, because

12
(J' d|HQu|2du> < sup |Hyu(x)|
M2 d

xe M¥

and the last term has already been estimated. §

6. THE ESTIMATION OF COMMUTATORS

The content of this section is rather technical, so it could be omitted in
the first reading.
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THEOREM 6.1. Let interactive potentials {® ,} satisfy Conditions 1-3 in
(2.1). Then ¥8e P, 3%, >0 such that YQ = Z“\nul(), |Q| < o, and for all

ue C‘fy‘l(MZd) the estimate

[Re(u, Hyu)y— %HQ I”Iﬁ - I“'fg(ﬂﬂ <Y, Iul(zknlBl (6.1)

1
is satisfied pointwise on x e M7’ Here the weight 5o(0)=1{p, . [I), 1, for
!
6= {p} and weight 1, is equal to
1 keQ
{ =1
{lo}e {0, k¢ Q. (6.2)
See the definitions of nul(@) and Gen(@) in (5.2) and (5.12).
Proof. Using the form of (-,-)s (Definition5.3) we transform
Re(u(x), Hyu(x)), to

Re(u(x), Hou(x))g=Re T By Dy,

ki, ... kjeZ¢

- =<V, Vi u(x), Vk,"'Vh( y Hau> (x)>. (6.3)
ae @
Commuting 3. H, with V, we have the terms
j 1
‘J’te(u, HQL{)HZERE Z pkj"'pkl

ky, ... kjezd
aeQ

<V Vi) H T Vit

J
+ 2 ViV

m=1

(Ve HV, | ~~~Vk,u(x)}>. (64)

m+ 1

The first term in (6.4) can be represented as a sum of the terms

] 1
%( Z Ha) Z i’k,"‘l)k1 |Vk,"'Vk,u(-’C)|2
ky

aeQ ,...,kjel"

J 1
+ Y PP V.V, VY, u(x)|?

ki, . kjeZ4
ae @
=3 H |u(0)fG + [u(x)|3, )5 (6.5)

due to Re< f, H,f > =1H,|f|*+ |V, f|* pointwise on any tensor f.
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For the empty multiweight 6= the calculations are finished with
constant Z,=0, but when 6% & we have to estimate the commutator
terms in (6.4).

Now we estimate one of the terms with commutator appearing in (6.4).
Using Condition 2 in (2.1),

[V., H,]=0 for |k—a|>r,,
we have
¥ 1
Re Z l/’k,"'Pk.<Vk}"'Vk,”(x),

k... kezd
aeQ

V- Ve [V HV, | ---Vklu(x)>§

. 12
j 1 2
; 2
<< )y P, Px, |Vk,"’vlqu(x)| >
ky, . ke 29
we @, la—kml €ro
j 1
: )y Pr, - Py
ki, ... kje 24
aeQ. la—kml<ro

12
AV -V, Ve, H Ve, - --V,qu(x)|2> ) (6.6)

m+1

The finite radius of interaction (2.1) leads to the estimate of the first
factor in (6.6) by (2ro)* |¢|Gens)» because the terms under summation do
not depend on a.

Therefore we only have to estimate the expression

J ! 2 1
S b b Vi Ve Vi H Vi - Veu(ol?)
ki kjeld
ae Q. |la-kyl <rg (67)

by Kﬂ IulGen(()):

A. Form of Commutators in (6.7). The next commutations are common
in Riemannian geometry [10]:

[V (V) )= 3 (R e, (6.8)
p=1
[Aas (Vu)i](fa)xl---sq: (Rlca)lf (Va)k (fu)sl--‘h“-.&'q

q

+ 2 (ga)j[ (Ra)izﬁ-ji (Va)r (.fa)xl coeheesy

f=1
q
i h
+ lfgl [(ga)/ (Vu)/ (Ra)_\/pli](;fu).\‘] s kst (69)
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Here g,, Ric,, R, denote the metric, Ricci, and Riemannian curvature
tensors on M,. Commutations (6.8) and (6.9) mean that on M,, aeZ*
the coordinate system {x,} is taken so (V,), is a covariant derivative on
M, in the ith direction. The objects (Ric,)f and (R,)! , denote the
{x;}-coordinates of the R, and Ric, tensors. The object (f,) is supposed to
be a g-covariant tensor field on M, with coordinates (f,),,...,...,,-

Now let f be of the form f=V,  ---V, u; then for some fixed aeZ?
there could exist the set y < {1, .., m — 1} such that for all iey; k;=a. Then
field fis a |p|-times covariant tensor field on M,, so we can rewrite com-
mutations (6.8) and (6.9) in the shorthand form

12

Vo, V. If=(RISf .u...
(6.10)
[A(I’ VU]]‘: (Rica)vuf+ Z(Ru)vufa + (V(lRa)jh"'(l”‘
It is necessary to stress that expressions (6.10) are only shorter forms of

(6.8) and (6.9).
The next lemma gives the form of commutators in (6.7).

LEMMA 6.2. Consider [=V, -V u in (6.7). Then for k, aeZ“:
|k —al > r,,

(Vi. H,1/=0, (6.11)
and for \k —a| <r,
mo
[Vie H1f=G"V [+ Y, Spn, SnuthiV S+ S} (6.12)
oy
Here
G* = 1(8,,(Ric,) + V.V, V) (6.13)
and

WiV f=(R)IV.f 4. (6.14)

hg. = {(VuRa)+%<V“ V”’ R”> }’f"'"'“’

where V, denotes the potential of the set {a} e Z“ (2.8):

V,= Y &,

Aae A
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Proof. The proof follows simply from the commutations

(Vi H 1 f= 5[V, 4.1 +3[Vi, <V, V. V> 1f

=3[V, 4,1/ + i<V, V V, V. > f
+3<V V[V, V> f

=<V, V,V, V> f
+ 0 {3RIic)V, [+ (RIV frgee + 3 (VR S}
+3<V Vs (R) > fryoor

= 1< [0, (Ric,) +V,V, ¥V, 1V, >f
+ 04 APV S B [}

B. The Estimation of the Commutators in (6.7). Using Lemma 6.1 and

the inequality ||x + p{ < |lx| + | y]| we can estimate term (6.7) the following
way:

J 1
2 Pi, - Pa,
ki, .. kjeZ?
aeQ. la—kyl<rg

1
AV Ve Ve H Ve, 1---Vklu(x)|2)

j 1
<< 2 P, P,
ki, kezd
aeQ, |a - kml <rg

1,2
. IV,(I eV {G"""“V,,V,‘”H .- -Vk,u}lz) (6.15)
mo 1 i m p
+ ( > < I1 Pk,) Ps, Pk,
g=1 k|..A.,k,EZ‘I i#nLy
ky=hkm
1/2
. |Vk/ Ve, {h’,""V,‘.kam . ---V,qu}|2> (6.16)

mo- 1 .
i m q
+ 3 (2 (1 w) b,
g=1 k1....,k1€1‘l i#m.q
ky—km
2

‘2

'
AV, -V, ’11'5"'V,(””---Vklu}|2) : (6.17)

et
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We can make the change in the indexes in (6.17), omitting the index k,,.

Then the multiweight 7= {;lq), (f), i#m, q)} belongs to gen(f) (see (5.7).
Using the definition of Gen(#) (5.12) we can estimate the (6.17) term from
above by

m—1 ot 1 172
Z ( Z ll' k,1"'l'k,‘|Vk,.1"'Vk,,,(h§”Vkm,“'Vk.u)|2> s
k

g=1 1,4..'k,,|el‘/
(6.18)
— 1
where {’ r,.,r}=neGen(8)in (5.12).
Interplacing the indexes of summation {k,,—a, a—k,} in (6.15) and
using the relation

m o m
€ Mué |ra/rkm| Se‘““a

when |a—k, | <r, (see (5.9)), and the condition that Q = Z“\nul(#) (5.2),
we estimate the (6.15) term from above by

; 1 1,2
eM“< ) Pk,"‘Pk."Vk,"‘vkml{Gk"'"Vk,,,Vk,,,,, "'Vk.“}|2> .
k..

..,kje["
ae Q. la—kul <ro (619)

The terms in (6.16), (6.18), and (6.19) have the structure

/ 1 172
( 5 qk,-~-qk1~|Vk,~--vk,{F"Vk,,--Vk.uw).
k

Leon kye 24
a — cond.

(6.20)

The indexes in (6.20) in concrete situations are equal to the following
terms.

(6.19) term. I=j, t=m+1, {q=p}!_,, F*=G** b={k,, a}, and
the o-condition in this situation means that the summation runs on ae Z¢,
la—k,|<r,.

(6.18) term. I=j—1, t=m, {(']=;}{;,’, FP=h%, b=k, and the
o-condition is absent.

(6.16) term. [=j, t=m+1, {(‘]:11)}{;1, Ft=h* b=k, and the
o-condition means that summation runs on points k.., k,eZ¢ with
k,=k,, for some fixed ge {1,..,m—1}.
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The relation V,(fg)=(V.f)g+ f(V,g) and the inequality |[x+ y|| <

lxll + || vl permit us to estimate (6.20} as a finite sum of the expressions
; . 2\ 112
(2 et |(Vr) [TV V] )
ky, .. kjez4 iel ied

a — cond (621)

where the sets / and J form the subdivision of {t, .., /} on two non-inter-
secting subsets,

TuJ={s .. 1, InJ=.
The field F’ has a finite diameter of support of cylindricity 2r, (see (6.13),

(6.14), and Condition 2 in (2.1)).
Therefore term (6.21) can be estimated by

()

iel

sup sup
iel be 4

2N\ 172
> . (622)

(H Vk,> Vi, o Viu

ield

! 1
. Z qk,"'qkl
ki, . kjezd

6 - cond
tki— k| <2rg.ief

Here s =m for (6.18), (6.19) and s=gq, ge {1, .., t—1}, for (6.16).

The factor at (6.22) is finite due to Assumptions 1-3 on {&,} in (2.1)
and due to the finite length of array Gen(8) <= P, so [1| </(8) < .

We only have to estimate (6.22) by |u(x)|, for some ¥ e Gen(). But
[u(x)], is completely determined by its multiweight ¥ (5.4), so we only
have to control the reduction of multiweights. .

Using relations (5.1) and (5.9) we can add all weights {q, };., to the

weight {q,.} in (6.22) and estimate it by

N om i i
e (T a)( T
ki, kie 24 i¢to ls) iedu s}

& - cond
ki — kol <2r0. i€l

(n Vk,) Vk,,l - 'Vkl u(x)

iedJ

25 1,2
) . (6.23)

Now we can omit the o-condition under the sum in (6.23) because for
the (6.18) term it is absent, and for the (6.16) term the sum of the diagonal

580/127,2-11
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{k,,=k,} is less than the sum of the independent variables {k,, k,}. For
the (6.19) term the sum

Z LTI &y

ki, . kje2d
acZ9 |a—kyl <rg

is less than

2r) Y

ki, ke zd

as %, ., do not depend on a.
Moreover, the terms under the summation in (6.23) do not depend on
{k;}ie . (recall that I'nJ= F). So the term (6.23) is less than

(2r0)d|1+/umeMnll\( Y ( I1 (']A>

ki€ Z4 ie {1, ., I}\d Ni¢g T {s}

(1wl o

ielu s} iel

2) - (6.24)

The final estimate of the (6.24) term is trivial because the multiweight

n={ 11 (i]; ((r], ref{l, ., IN\({u {s}))}

ielu{s}

belongs to Gen(6).
The final estimate on the quasi-accretive constant &, (6.1),

Dy <ly(1 4+ 1,)(2rpe™)o+ 1 2 max(F,, F,), (6.25)

follows from (6.4), (6.15)-(6.19), (6.24), (6.23), and the calculation of the
maximal number of terms appearing after the successive application of
Vifg)=(Vf)g+ f(Vg) to (6.20). Here /(A) is a length of weight 8¢ P,
constant M, appears in (5.9), and r, denotes the interactive radius. The
constants F,, F, are equal to

Fi= sup |H5kj Ric, +Vij V{k.j} ‘”1(6)4
k, jezd

(6.26)
Fy=sup IR Moy 1>

kezd
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where

Wl = sup {IVy Vi f(x) sj<n ke 27} (6.27)

xeME

At last, recall that for 6 = & the proof is finished on (6.5) with constant

7. DIRICHLET OPERATORS SEMIGROUPS IN THE SCALE &:
THE PROPERTY OF INVARIANTNESS

DermITION 7.1, We denote by A%, A9, and A%* the closures of

operator {H,, |QI <o} (4.1) from domain Q(HQ)zC‘;‘,(MW) in the
spaces {L,(M 7' u), ue %{u,}, &. and Z(p, x), respectively.
Below we prove that operators A%, HS, and A%* |Q[<oo, are
generators of strongly continuous semigroups in the corresponding spaces.
In other words, the operators {H,,, |Q| < oo} are essentially selfadjoint
in {L,(M7 u), ne%{u,}} and are essentially maximally quasi-accretive
in scales {&} and {Z(p, «)} (see Appendix, Definition A.3 for the defini-

tion of maximal quasi-accretivity).

Due to the smooth solvability of the Cauchy problem (4.3) in C;,,(Ml")
and the quasi-accretivity of H,;, (4.2) in spaces {&} and {Z(p, 2)}
(Theorems 5.6 and 5.8), we have the next statement as in Corollary 4.2

THEOREM 7.2. Under Conditions 1-3 on interactive potentials {® ,} in
(2.1) we have that

1. Vie {0, 1} and VQ < Z¢, |Q| < cv, the operator H y, is essentially
maximally quasi-accretive in space Z(p, o) with essential domain C,(M )
Sfor every p, «;

2. Vie{0,1}Y and YQ < Z\nul(®), |Q| < w, for the quasi-accretive
array of multiweights @ the operator H, is essentially maximally quasi-

. . . . . . d
accretive in space &g with essential domain C2 (M .

Proof. The proof completely repeats the proof of Corollary 4.2; there-
fore it is omitted. The only difference lies in the estimate

HPEOS Ny <e™ 11 fllx

for X=46¢ or X=Z(p, 2). This estimate simply follows from the quasi-
accretivity of operator H,,;, in the space X (see Theorems 5.6 and 5.8). |
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COROLLARY 7.3. Under Conditions 1-3 on interactive potentials {® .} in
(2.1) we have that corresponding closures of H ), |Q| < o, satisfy the next
estimates (for © to be quasi-accretive we ask Q nnul(@)= ):

1A+ 500 ™ i < 14, A>0 (7.1)
IA+HEw) M i) < V(A= Do), A>De (72)
A+ A%5) " piripan < V(A —2, ), i>9,,. (7.3)

Proof. Due to Theorem 7.2 and Corollary 4.2 the required estimate
follows from the Hille—Yosida theorem in the Lumer—Phillips form (see
Remark A.4 in the Appendix). |

THEOREM 7.4. Under Conditions 1-3 in (2.1) we have that ¥V |Q| < ¢ the
Dirichlet operator H, with domain Z(Hgy)=Cl (M Zd) is

1. essentially self-adjoint in the space L,(M % p), for pe G, (see
(2.5));

2. essentially maximaly quasi-accretive in Z(p, o) and in &g for ©
quasi-accretive ( Definitions 5.4 and 5.5), Q nnul(®)= .

Proof. Here we apply Theorem 4.3 to the operators {4, = Hop;)}ic 10.13¢-

Theorem 5.9 and Corollary 7.2 give the conditions of Theorem 4.3 in the
cases Y=4(r,7)and Xe {LZ(MZ", 1), 8o, Z(p, o)}, sofor 3. A,= H, (see
(4.1)) we obtain the essential domain Y = 2(r, 7). We only have to ensure
that A¥1,= A4}, which follows from the solvability of the Cauchy problem
(43) in CZ (M),

Due to the density of C‘;,(MZ") in Y and the estimates

lul x<llully — and  |Houlx<lluly,

we obtain that C‘C’;,(M‘Zd) is the essential domain for H,. |

Now we begin to investigate the action of {exp(—tﬁ‘é),peg{,u/,}}
semigroups in the scales of spaces {&s} and {Z(p, 2)}.

THEOREM 7.5.  Under Conditions 1-3 in (2.1) on potentials {® ,} we have
that Yue%{u,} the semigroups of Hermitian realizations of a formal
Dirichlet operator of the Gibbs measure {exp(—tﬁ‘é), pebiu,l, Q<=4
|@| < w0} have the following properties:

1. preserve each space Z(p,a) or g for the quasi-accretive array
PecP, Qnnul(@)=,;

2. coincide for different pe%{u,} on these spaces at fixed Q < Z*,
10| < o0;
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d
3. for foe CLUM™)VQcZY |Q| <o

exp(—tH%) fo € ﬂfp,
and

exp(—tH ) foE N 8.
Qnnul(®)=F

&isy-accretive
Proof. We use Theorem 4.3 in two different cases:

1. X=E, in which the space E belongs to the scales {&,} or
{Z(p,2)}, and Y= 2(q, #). Due to Theorem 5.9 we can choose (g, ) so
that ¥ < 2, (H2.);

2. X=L,(M” u), ne%{pu,}, and Y =2(q, ) as above.
Theorem 4.3 results in the following two multiplicative formulas for the

semigroups (see (4.6)):

1. In the space L,(M 7', p), ue {u,},

t A mn
exp(—~tHY) =L, —s— lim { IT exp<v;1—1HQ(,)>} C14)

e Lie o1

2. In the space Ee {&y, Z(p, o)},

exp(—tA})=E—s— lim { I exp<~—Hgm>} . (7.5)

n— A
i€ {01}

The representations (7.4) and (7.5) permit us to obtain the properties of
an operator with interaction H, through the properties of operators with
independent variables H,,,.

Consider f, € CL)I(M‘Z ). Then (7.4), (7.5), and the smooth solvability of
the Cauchy problem (Theorem 4.1) give the next line of identities:

exp(—tH%) fo=1L,— lim { IT cxp(——HQm>}f0

n o A .
ie {0,114

= {sequence of the smooth cylindric Cauchy problems }

=L,— lim { I1 exp(—- Q',))}fo
m-= ot e qo,1
=F— li_r}ly { I1 exp( Q(,,>}f0

ie 10,144

=exp(—tA}) fo. (7.6)
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So the action of the Dirichlet operator semigroup on smooth cylinder
function can be represented as a sequence of functions which are obtained
as the successive solutions for the Cauchy problems for operators H
(4.2). This sequence of functions converges not only in the topology of
space L, but also in the topology of space E, because of (7.5). Therefore
we have that f,e CJ,( M7 ) implies exp(—tHQ)f(,eE for any E from the
scale {dg} or {Z(p, %)}. So we have proved that exp( —rH" ) preserves the
spaces of scales {&,} and {2°(p, «)}. The formula (7.6} gives that the semi-
groups exp(th } coincide for different ue%{u,} on spaces & or
Zp2) |

Remark 7.6. Under the conditions of Theorem 7.5 we also obtain that
exp(—tH )} restricted onto the space Bc A coincides with exp(—tHB)
Here the spaces A, B are from the scales {L,(M % pu), ue 4{u,}}, {&,}
or {#(p,a)}. The inclusion B< 4 is understood in the sense of a corre-
sponding estimate for the norms || || ,< | ||z on Ccy,(MZ’I)

8. THE SMOOTHING PROPERTIES OF DIRICHLET OPERATORS SEMIGROUPS

Below we investigate the action of semigroups for Dirichlet operators of
Gibbs measures {exp(—tH%), pe%{u,}, Q<7 |Q|<oc} in the scale
{6g}. We provide the condmons on array @€ P when for the space &g
there is a directed sequence of Banach spaces {&g },50:

So=8g,0 - D6 D8p,, D,
such that for every 1 >0, i =1 we have the estimate
lexp(—1H%.) fo o, < const(i, 1) | foll -
Here i=1(©®,;) — /(@) denotes the increment of the order of differentiation.

In other words, we obtain that the solution f(t, x) of the Cauchy
problem

of(t, x)

ot
10, x)e &y

= —H4f(1,x)

is infinitely differentiable: Y1 >0, f(7, x}e ), o,
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DerINITION 8.1. For a finite array of multiweights & € P we define the
array

1 !

SQ(@)z U {p, B3} palQ}s (81)

0:(|lt.,...|[>i69

where 1, denotes the following weight:

1, keQ
1 =
Hoke {o, keZ™Q.

Let also @,(Q) denote the next array,
0,(Q)= s,(8). (8.2)

1=0

with s, =505(s5 ).

DEerFINITION 8.2. The array of multiweights is said to be consistent if
both @ and @,(Z¢) are quasi-accretive arrays (see Definition 5.3). We say

that array @ is k-consistent if for i=1, ..,k (i>1) the arrays ©,(Z“) are
quasi-accretive.

Remark 8.3. Let the quasi-accretive array @ — P satisfy the condition
s/(gen(8)) < 0. (83)
Then array € is cc-consistent. It is simply proved by induction that each

©,(2%) is quasi-accretive and satisfies Property (8.3).

THEOREM 8.4. Suppose that the interactive potentials {® ,} satisfy Con-
ditions 1-3 in (2.1). Let @ € P be a consistent array. Then YQ < Z*\nul(@),
Q[ < o0, we have the estimate

e ds: lexp(—tH) o, < C) IS 1o
with the uniform on Q constant C(t), t> 0.
Proof. Introduce on &g, o, the next sequence of seminorms
p)=swp IS (Nv2t T (i}
xeM? (gco 0 e sg(9)
Then

1. for =0, po(f) is equivalent to | f|3;
2. for >0, p,(f) is equivalent to || /3, -
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Therefore the statement of Theorem 8.4 can be obtained from the
estimate

p.(exp(—tHY ) < e™po(f)

with some constant a > 0.
To obtain the above estimate it is sufficient to prove that

dp.(exp(—tH%)f)
ot

<ap,(exp(—tHY) ). (8.4)

Theorem 7.5 gives for f,e C% (M%) that

cyl

exp(—tHY%) foe () Z(p, ®)
p.
and

exp(—tﬁ‘é)f(,e R Eo.
nul{&)n Q=

8 is g-accretive

The countable product of compact manifolds is a Tichonov metrizable
compact with metric

|
pxy)= 3 o pilxi v,

kezd

where ¢>0 and p,;(x,, y;) denotes the geodetic distance between points
x;, ¥; on manifold M, The next statement proposes the conditions on
differentiability of the maximum function.

LEmMa [20, Chap.2, Thm. 3.13]. Let K be a compact metric space.
Suppose that the function F(1, x) satisfies the following assumptions:

1. F(t, x), (CF(1, x)/0t), are continuous on [0, T] x K;
2. max, .o 7 [O2F(1, x)/08] < 0.

Then Yt e [0, T] we have that

Ié) JF(t, x
~- max F(t, x)= max ( ),
Ot xek xe X(1) (‘31

(8.5)

where X(t)= {x: F(t, x)=max _, F(t, y)}.

Consider fye C*,(M ). Put

cyl

F(t’ x): z (Plf()’ Ptf0)0+2t Z (Plfos Pth)t)’a

e & (1’6\'@19)
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where P,=exp(—tﬁ‘é). It is obvious from Definition 5.3 of (-, ), (see
(5.5)) that the derivatives of F(t, x) are represented as a finite sum of terms
(P,Hbfo, P,HY fo), for some powers i, m>0. The cylindricity of f, and
{Hyfo}:s0 implies that 8“F(1, x)/ér* are bounded on [0, 7] x M% k>0

Due to Remark 7.6 and uniform convergence on [0, 7] in (7.5) we have
that {G*F(t, x)/dt*},., can be represented as the wniform limits on
[0, T1x M % of terms like

(TmJHiQ/fO’ Tm.lHkaO)()’ (86)

where operator T, , equals

, " m
Tm,I:< {1;[ dexp(_;;;H‘é(;|>> (87)
ie {0,1}
as in (7.6).

But T,,,_,H"Qf0 is a cylinder function on M7, therefore the term (8.6) is
continuous in the topology of [0, 7] x M %",

So we have obtained that {0*F(t, x)/01*}, . are bounded continuous on
[0, T]x M as the uniform limits of continuous functions.

For xe X(¢) = {x :max .z F(1,y)=F(1, x)} we have

JF(t, x)
—5 =2 X P Sili+2 X Re(=HoPifo. Pifo)e
i 8 esp(©) ve®
+41 Yy  Re(—HyP fo, Pifo)e-
0 €s50(8)

Theorem 6.1 enables us to estimate this expression from above by

aF(t, x) ‘
at Sz Z IP,f()I?;
0'e50(0)
—Hg[z P42 T |P,f0|z,]
dee 0 esp(@)

-2 3 |P,fo|fQ(,,,—4t Y 1P 3010')

He® 0 €sp(8)

+ 2 90|Plf0|éen10)+4’ Y Q”o’lprfolzcen(fn

e ® 0'esg(O)

< —HQF(I, x)+ Z @y IPrfoléen(())
fe®

+ 4t z 90' |P1f0|éen(9')'

6 cs0l®)

580/127/2-12
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The expression H, F(1, x) is correctly defined due to the estimate

|HQ(Pths Pth)(I'
<1P. /il w.+( 5 1/qk) 1P, fols

kezd

i . 172
( > Py, Py, qk“.|Hk,+,Vk,"‘Vk1P:fo|2> . (8.8)
ki

venkjpre2d

Here we use that HQ<ff> 2‘Re<Hfo> + |Vf]2

For f, € CZyl(M “) both terms in the estimate above are finite due to the
third statement of Theorem 7.5.

The convergence (7.5) and estimate (8.8) imply that Hy(P, fo, P, fo)o
can be represented as a uniform limit on [0, T} x MZ of the continuous

cylinder on M ¢ functions

HQ(szoa P fo)o= hm HQ( 1 J0> T iS0)o>

where T, , is defined in (8.7). Therefore H,, F{(t, x) is a continuous function
on [0, T] x MZ As x € X(t) is a maximum point for F(t, x) we see that

— HyF(1, x)<0.

The condition of consistency for array @ implies that gen(®)<® and
gen(@,(Q)) <O,(Q). So we can write the next estimate,

OF(t, OF(1, x)
< Do CEIS 210, ()1 - (IPSol + 41 [P fol )

< const(1 + 2t) F(t, x).

Due to (8.5) we have the required estimate (8.4) for t€ [0: T].
The density of CJ (MZ ) in & and the estimate [lexp(—1HE) fol o) <
C(t) | flle for fe Ccyl(M7 ) give the statement of Theorem 8.4. |

COROLLARY 8.5. Let the interactive potentials {®,} satisfy Condi-
tions 1-3 in (2.1).

Suppose that array @ is k-consistent for 1 <k < oo. Then for i=1, ..,k
and YO < Z*\nul(®), |Q| < o, we have the estimate

IIGXP(—IH Mo <Cit) I fle

Jfor fe &g. Therefore the semigroup of Dirichlet operators raises the smooth-
ness of the initial function.
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Remark 8.6. As a consequence of Theorem 8.5 we have that the semi-
group of Dirichlet operators H ;. acts from the space & with sup |-| norm
into the Frechet space (),,, &;, where &; is equipped with the norm

1,2

llull;= sup max( > |Vk,"'Vk1u(x)|2>

xeMP O <i \ky. L ke zd

Below we investigate the role which Conditions 1-3 play in (2.1). We
show that only Condition 2 has principal importance.

THEOREM 8.7. Let the interactive potentials {® .} satisfy Condition 2 in
(2.1). Suppose that for some nz=0, ®,eC"* (M*) and we have the
estimates

sup || 0y, Rick+VkVi< Y (15,,) <oC (8.9)
kjezd Ak jeA n+3
and
sup | Rl 43 < 00. (8.10)
kez?
Here ||| -|l| denotes the expressions
J
Ell,= sup max {lT’,‘;‘l -~ THF(x)| Z s;<m s, =1, 2}
xe€ Mzdkl....,k,el‘i ! i=1
and
TLf=V.f
Tif: Akf
as in (5.15).
Then

1. Operators {H,, |Q| < o} are essentially self-adjoint in L,(MZ p),

HeG{u,}, with essential domain of smooth cylinder functions C (M 7,

2. The semigroup exp(—tH o) preserves spaces &g for Q N nul(@) = &,
(@) < n and O, to be quasi-accretive.

3. The semigroup exp(— tﬁ’é) acts from ég into &g ) as a continuous
map. Here i+ {@)<n, Q nnul(@)= &, and array O should be i-consistent.
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Proof. We only sketch the general scheme, because it completely
follows the scheme of this paper. First recall that conditions (8.9) and
(8.10) appear in (6.26).

The Cauchy problem (4.3) is smoothly solved in C’C’J“(MW) as in
Theorem 4.1. The uniform quasi-accretivity in Theorem 5.6 for /(@) <n+4
gives the multiplicative formula for semigroups in the space &g with

/(@) =n. Therefore we have Theorem 8.4 only for i<n—1{(@). |

9. APPENDIX

Here we provide some facts and definitions of semigroup theory in
Banach space X. It can be found in more details in [17], where the wide
citation on this and connected questions is also given.

We also give a simple generalization of the Da Prato-Grisvard
theorem [11] for the case of a finite number of operators sum (see
Theorem A.5).

DEerINITION A.l. The strongly continuous semigroup in Banach space X
is a family of bounded operators T= {7(t), te R} = #(X) which satisfies
the conditions

1. Vi,5eR:T() T(s)=T(t+5);
2. T(0)=1d;

3. for every fe X the function 7(-)f: R, — X is continuous.

DerFiNiTION A.2. The strongly continuous semigroup 7 is said to be
contractive if | T(¢t)|| ,(x, <1, te R, . Correspondingly, T is said to be quasi-
contractive if | T(1)|| 4y, <e™, M>0.

DerFmNiTiION A3, Let {-,-)> denote the duality between X and dual
space X*. For every element fe X put

J(f)={geX* 8l =Ilf1?=<Lfi¢>}

The set J(f} # & for every fe X due to the Hann-Banach theorem.

Let j be some section of the set J so j: X — X* and j(f)e J(f) for every
fe X. The map j is said to be the duality mapping.

Operator A is said to be quasi-accretive with respect to the duality
mapping j if there is a constant M e R' such that

VYAe Z(A) : Re(A+ M), j(f)>=0.
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The quasi-accretive operator is said to be maximally quasi-accretive if A
does not have quasi-accretive extensions.

Remark A4. The Hille-Yosida theorem in the Lumer-Phillips form
implies that the maximally quasi-accretive operator A4 is a generator of the
quasi-contractive semigroup exp(—tA4} with no dependence on concrete
duality mapping.

Moreover, the resolvent of operator A4 satisfies the estimate

H(/'i""A)il”_sm,\’)S I/U~_M)

for some constant M > 0.

THEOREM A.S. Let X be a Banach space. Suppose that

L. Operators A4,, .., A,, B are closed operators in X and there are
constants %y, ..., %,, >0 such that

[GHA) N SVG—2),  d>a

1A+ B) " iy S 1A= B), A>B.

(9.1)

2. There is a Banach space Y which is densely and continuously
imbedded into X, Y < 2(B) such that Y is densely and continuously imbedded
into 2(A?) for i=1, ..., p with graph norm in X:

Vye Y: |AZy|ly<const ||y y.

3. There are constants y, ..,7,, 0>0 such that the restrictions of
operators A;, B onto Y satisfy the estimates

H()‘+A:’TY)W]“;1'1}')< 1/(}“_))1)’ ;v>”/’.’
1+ BT Ny, <VGA=8), A>3,

Then the operator L=A,+ --- + A, + B with domain Z(L)=Y an essen-
tially maximally quasi-accretive operator in space X.

Proof. We briefly outline the main steps of the proof.

1. Let A be a quasi-accretive generator of the strongly continuous
semigroup exp(—1tA4) in space X. For sufficiently large ne N the Yosida
approximation of operator A4 is defined:

A'=nAn+ A) '=n—n*(n+ A) L.
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Then the estimate
sup | A"x — Ax|| x =sup |[[(n+ A) "' Ax]||x
Ixh + haxi + 1 4%x1 < R

<R/(n—M)—-0, n-— o

implies the convergence of the Yosida approximation uniformly on balls
from 2(A%). Here M >0 denotes the constant of quasi-accretivity for
operator A.

2. Let L, _, denote the operator

{Q(Lm,.,..,.p)=@(3) (9.2)

L, .=A7"+ ---+Ar+B,
<o Pp P
where A denotes the Yosida approximations of operators A4,.
Put w,=8+a, + -+ +a,, then for every ¢>0 there is a constant

C..,>0 such that for every k<p, 2>w, +¢, and n,, .., n,>C,, we have
the estimate

“(Lm.,.., ng + /L) I” LX) < 1//(;~_ (wk + 6))

This estimate is obtained easily from the iterative estimation of the
equation

(Lul, +A~‘) I:(Ln|....,nk+)'+nk+l)

e 41

. {1 _”/E(Ak+”k)7l (Ln|.“.,m\v+i+nk)”l} 'l'

3. As in Step2 we have that Ve>0 3K, such that for A>0+¢,
f=y,+ --- +7y,+ B, we have the estimate

MLy, oongt2) Ty S VA= (B4 2)). (9:3)

4. Now we prove that (L+ 4)Y is dense in X for A>68+¢ From
(9.3) for n,, .., n,> K, we obtain that

(L,,,,__A_,,,,+l)*' Yc YnZ(B)cZ(L). (94)

So for ye v,

={{(Ad, =AM+ - (A, —APHL,, L, +A) T (95)

e fp

The estimate (9.3) implies that for fixed yeY the sequence
{(Ly. .+ 4" ¥} >k is bounded in Z(47), i=1,.., p, with graph
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Step 1 of the proof implies that

(Ai_AT‘)(Lnl, n,,+}")7ly_}0

uniformly in X when n,— o for every i=1, .., p.

U

Uniform convergence and (9.5) imply that for every ye Y,

(L+ANL,,, o+ 4y oy, for ny,..,n,— .
sing (9.4) we have that (LTZZ) Yo Y; therefore (L + 2) Y is dense in X for

—

some A>6+¢& Here (L + 4)Y denotes the closure of set (L+4)Y in the
space X.

The density of ¥ and so of (L+ 1)Y in X and the quasi-accretivity of

operator L give the essential maximal quasi-accretivity of operator L,

2(L)=Y (see the Hille-Yosida theorem in the Lumer-Phillips form
[(17]). 1
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