701 research outputs found

    Self-adaptive loop for external disturbance reduction in differential measurement set-up

    Full text link
    We present a method developed to actively compensate common-mode magnetic disturbances on a multi-sensor device devoted to differential measurements. The system uses a field-programmable-gated-array card, and operates in conjunction with a high sensitivity magnetometer: compensating the common-mode of magnetic disturbances results in a relevant reduction of the difference-mode noise. The digital nature of the compensation system allows for using a numerical approach aimed at automatically adapting the feedback loop filter response. A common mode disturbance attenuation exceeding 50 dB is achieved, resulting in a final improvement of the differential noise floor by a factor of 10 over the whole spectral interval of interest.Comment: 7 pages, 8 figures, 26 ref

    Restoring Narrow Linewidth to a Gradient-Broadened Magnetic Resonance by Inhomogeneous Dressing

    Full text link
    We study the possibility of counteracting the line-broadening of atomic magnetic resonances due to inhomogeneities of the static magnetic field by means of spatially dependent magnetic dressing, driven by an alternating field that oscillates much faster than the Larmor precession frequency. We demonstrate that an intrinsic resonance linewidth of 25~Hz that has been broadened up to hundreds Hz by a magnetic field gradient, can be recovered by the application of an appropriate inhomogeneous dressing field. The findings of our experiments may have immediate and important implications, because they facilitate the use of atomic magnetometers as robust, high sensitivity detectors in ultra-low-field NMR imaging.Comment: 9 pages, 7 figures, 33 refs. This is the unedited versio

    Simultaneous Detection of H and D NMR Signals in a micro-Tesla Field

    Full text link
    We present NMR spectra of remote-magnetized deuterated water, detected in an unshielded environment by means of a differential atomic magnetometer. The measurements are performed in a μ\muT field, while pulsed techniques are applied -following the sample displacement- in a 100~μ\muT field, to tip both D and H nuclei by controllable amounts. The broadband nature of the detection system enables simultaneous detection of the two signals and accurate evaluation of their decay times. The outcomes of the experiment demonstrate the potential of ultra-low-field NMR spectroscopy in important applications where the correlation between proton and deuteron spin-spin relaxation rates as a function of external parameters contains significant information.Comment: 7 pages (letter, 4 pages) plus supplemental material as an appendix. This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of Phys. Chem. Lett., copyright American Chemical Society after peer review. To access the final edited and published work see: pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b0285

    First results from the INDRA-FAZIA apparatus on isospin diffusion in 58,64 Ni+58,64 Ni systems at Fermi energies

    Get PDF
    An investigation of the isospin equilibration process in the reactions 58;64Ni+58;64Ni at two bombarding energies in the Fermi regime (32 MeV/nucleon and 52 MeV/nucleon) is presented. Data have been acquired during the first experimental campaign of the coupled INDRA-FAZIA apparatus in GANIL. Selecting from peripheral to semi-central collisions, both the neutron content of the quasiprojectile residue and that of the light ejectiles coming from the quasiprojectile evaporation have been used as probes of the dynamical process of isospin diffusion between projectile and target for the asymmetric systems. The isospin transport ratio technique has been employed. The relaxation of the initial isospin imbalance with increasing centrality has been clearly evidenced. The isospin equilibration appears stronger for the reactions at 32 MeV/nucleon, as expected due to the longer projectile-target interaction time than at 52 MeV/nucleon. Coherent indications of isospin equilibration come from the quasiprojectile residue characteristics and from particles ascribed to the quasiprojectile decay.This work was partially supported by the National Research Foundation of Korea (NRF; Grant No. 2018R1A5A1025563) and by the Spanish Ministerio de Econom a y Empresa (PGC2018-096994-B-C22). We acknowledge support from R egion Normandie under R eseau d'Int er^et Normand FIDNEOS (RIN/FIDNEOS). Many thanks are due to the accelerator sta of GANIL for delivering a very good quality beam and to the technical sta for the continuous support

    Nuclear symmetry energy at work in heavy ion reactions: new results from the INDRA-FAZIA apparatus

    Get PDF
    The recently coupled INDRA-FAZIA apparatus offers unique opportunities to investigate heavy ion collisions at Fermi energies by combining the optimal identification capabilities of FAZIA and the large angular coverage of INDRA. We present a selection of the results of the analysis of the first experimental campaign performed with INDRA-FAZIA, in which the four reactions Ni-58,Ni-64+Ni-58,Ni-64 have been studied at two different beam energies (32 and 52 MeV/nucleon) in the intermediate energy regime. The present work is focused on the isospin diffusion effects in semiperipheral and peripheral collisions. A stronger isospin equilibration is found at 32 MeV/nucleon than at 52 MeV/nucleon, as expected due to a shorter projectile-target interaction time in the latter cas

    Sub-millimetric ultra-low-field MRI detected in situ by a dressed atomic magnetometer

    Full text link
    Magnetic Resonance Imaging (MRI) is universally acknowledged as an excellent tool to extract detailed spatial information with minimally invasive measurements. Efforts toward ultra-low-field (ULF) MRI are made to simplify the scanners and to reduce artefacts and incompatibilities. Optical Atomic Magnetometers (OAMs) are among the sensitive magnetic detectors eligible for ULF operation, however they are not compatible with the strong field gradients used in MRI. We show that a magnetic-dressing technique restores the OAMs operability despite the gradient, and we demonstrate sub-millimetric resolution MRI with a compact experimental setup based on an in situ detection. The proof-of-concept experiment produces unidimensional imaging of remotely magnetized samples with a dual sensor, but the approach is suited to be adapted for 3-D imaging of samples magnetized in loco. An extension to multi-sensor architectures is also possible.Comment: 5 pages, 3 figures, 36 refs, 3 pages supplemental material (+ 3refs). Accepted for publication in Appl.Phys.Let

    Spin dynamic response to a time dependent field

    Get PDF
    The dynamic response of a parametric system constituted by a spin precessing in a time dependent magnetic field is studied by means of a perturbative approach that unveils unexpected features, and is then experimentally validated. The first-order analysis puts in evidence different regimes: beside a tailorable low-pass-filter behaviour, a band-pass response with interesting potential applications emerges. Extending the analysis to the second perturbation order permits to study the response to generically oriented fields and to characterize several non-linear features in the behaviour of such kind of systems.Comment: 13 pages, 7 figures, 52 references. Accepted for publication in Applied Physics

    Electromagnetic induction imaging with a scanning radio-frequency atomic magnetometer

    Get PDF
    We demonstrate electromagnetic induction imaging with an unshielded, portable radio-frequency atomic magnetometer scanning over the target object. This configuration satisfies standard requirements in typical applications, from security screening to medical imaging. The ability to scan the magnetometer over the object relies on the miniaturization of the sensor head and on the active compensation of the ambient magnetic field. Additionally, a procedure is implemented to extract high-quality images from the recorded spatial dependent magnetic resonance. The procedure is shown to be effective in suppressing the detrimental effects of the spatial variation of the magnetic environment.Comment: Lette

    Fast, cheap, and scalable magnetic tracker with an array of magnetoresistors

    Full text link
    We present the hardware of a cheap multi-sensor magnetometric setup where a relatively large set of magnetic field components is measured in several positions by calibrated magnetoresistive detectors. The setup is developed with the scope of mapping the (inhomogeneous) field generated by a known magnetic source, which is measured as superimposed to the (homogeneous) geomagnetic field. The final goal is to use the data produced by this hardware to reconstruct position and orientation of the magnetic source with respect to the sensor frame, simultaneously with the orientation of the frame with respect to the environmental field. Possible applications of the setup are shortly discussed, together with a synthetic description of the data elaboration and analysis.Comment: 10 pages, 7 figures, 30 ref
    • …
    corecore