70 research outputs found

    Diagnosis and Treatment of Pulmonary Disease in Sea Turtles (Caretta caretta)

    Get PDF
    The aim of this study was to describe the clinical signs, radiographic, endoscopic and CT findings, cytological and microbiological findings and treatments of pulmonary diseases in sea turtles, in order to obtain an accurate diagnosis that avoids unnecessary therapy and antibiotic-resistance phenomena. In total, 14 loggerheads (Caretta caretta), with clinical and/or radiographic findings of pulmonary pathology, were assessed through various combinations of clinical, radiological, CT, endoscopic examination and bronchoalveolar lavage, which recovered fluid for cytologic and microbiologic analysis. In all cases, radiographic examination led to a diagnosis of pulmonary disorders—4 unilateral and 10 bilateral. All bacteria cultured were identified as Gram-negative. Antibiotic resistance was greater than 70% for all beta-lactams tested. In addition, all bacterial strains were 100% resistant to colistin sulfate and tetracycline. Specific antibiotic therapies were formulated for seven sea turtles using Enrofloxacin, and for four sea turtles using ceftazidime. In two turtles, antibiotic therapy was not included due to the presence of antibiotic resistance against all the antibiotics evaluated. In both cases, the coupage technique and environmental management allowed the resolution of the lung disease without antibiotics. All 14 sea turtles were released back into the sea. Radiographic examination must be considered the gold standard for screening sea turtles that show respiratory signs or abnormal buoyancy. Susceptibility testing with antimicrobials allowed appropriate therapy, including the reduction of antibiotic-resistance

    Radiobiological studies on the 62 MeV therapeutic proton beam at lns catania: II. facs analyses of HTB140 melanoma cells

    Get PDF
    The objective of this study was to determine whether apoptosis and cell cycle redistribution were influenced by high-LET irradiation. Exponentially growing HTB140 cells were exposed to an unmodulated 62 MeV proton beam, within the Bragg peak, delivered over the single dose range from 8 Gy to 24 Gy. At 6 h post-irradiation, there was a low level of early apoptosis. At 48 h irradiated cells were more damaged, showing the increase in number of apoptotic nuclei. The dose dependent cell cycle phase distribution was detected at 48 h post-irradiation. The cell population exhibited phase redistribution toward G2/M phase.Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200

    Radiobiological studies on the 62 MeV therapeutic proton beam at lns catania: I. survival of HTB140 melanoma cells

    Get PDF
    The aim of this study was to determine the initial inactivation of cells induced by high-energy proton beam designed for the treatment of eye melanoma. Exponentially growing HTB140 cells were exposed to an unmodulated 62 MeV proton beam delivered over the single dose range from 8 Gy to 24 Gy. Position of samples was in the zone of the Bragg peak, having high LET values. Surviving fractions were evaluated at 6, 24 and 48 h post-irradiation. The survival curves exhibited a well-known shoulder, decreasing for doses higher than 8 Gy. Therefore, a significant dose dependent early cell inactivation after single delivery of 16 Gy to 24 Gy to the cell monolayer was observed. With the increase of the post-irradiation incubation time, a better killing effect, as the consequence of clonogenic survival, was detected.Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200

    Management of severe head injury with brain exposure in three loggerhead sea turtles Caretta caretta

    Get PDF
    The loggerhead Caretta caretta is the most common sea turtle in the Mediterranean. Currently, sea turtles are considered endangered, mainly due to the impact of human activities. Among traumatic lesions, those involving the skull, if complicated by brain exposure, are often life-threatening. In these cases, death could be the outcome of direct trauma of the cerebral tissue or of secondary meningoencephalitis. This uncontrolled study aims to evaluate the use of a plantderived dressing (1 Primary Wound Dressing®) in 3 sea turtles with severe lesions of the skull exposing the brain. Following surgical curettage, the treatment protocol involved exclusive use of the plant-derived dressing applied on the wound surface as the primary dressing, daily for the first month and then every other day until the end of treatment. The wound and peri-wound skin were covered with a simple secondary dressing without any active compound (non-woven gauze with petroleum jelly). Data presented herein show an excellent healing process in all 3 cases and no side effects due to contact of the medication with the cerebral tissue

    Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach

    Get PDF
    The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described

    A straightforward multiparametric quality control protocol for proton magnetic resonance spectroscopy: Validation and comparison of various 1.5 T and 3 T clinical scanner systems

    Get PDF
    Purpose: The aim of this study was to propose and validate across various clinical scanner systems a straightforward multiparametric quality assurance procedure for proton magnetic resonance spectroscopy (MRS). Methods: Eighteen clinical 1.5 T and 3 T scanner systems for MRS, from 16 centres and 3 different manufacturers, were enrolled in the study. A standard spherical water phantom was employed by all centres. The acquisition protocol included 3 sets of single (isotropic) voxel (size 20 mm) PRESS acquisitions with unsuppressed water signal and acquisition voxel position at isocenter as well as off-center, repeated 4/5 times within approximately 2 months. Water peak linewidth (LW) and area under the water peak (AP) were estimated. Results: LW values [mean (standard deviation)] were 1.4 (1.0) Hz and 0.8 (0.3) Hz for 3 T and 1.5 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficient of variation of LW and AP for different spatial positions of acquisition voxel were 43% (20%) and 11% (11%), respectively. The mean (standard deviation) phantom T2 values were 1145 (50) ms and 1010 (95) ms for 1.5 T and 3 T scanners, respectively. The mean (standard deviation) (across all scanners) coefficients of variation for repeated measurements of LW, AP and T2 were 25% (20%), 10% (14%) and 5% (2%), respectively. Conclusions: We proposed a straightforward multiparametric and not time consuming quality control protocol for MRS, which can be included in routine and periodic quality assurance procedures. The protocol has been validated and proven to be feasible in a multicentre comparison study of a fairly large number of clinical 1.5 T and 3 T scanner systems
    • …
    corecore