38 research outputs found

    Clinical evidence continuous medical education: a randomised educational trial of an open access e-learning program for transferring evidence-based information – ICEKUBE (Italian Clinical Evidence Knowledge Utilization Behaviour Evaluation) – study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In an effort to ensure that all physicians have access to valid and reliable evidence on drug effectiveness, the Italian Drug Agency sponsored a free-access e-learning system, based on <it>Clinical Evidence</it>, called ECCE. Doctors have access to an electronic version and related clinical vignettes. Correct answers to the interactive vignettes provide Continuing Medical Education credits. The aims of this trial are to establish whether the e-learning program (ECCE) increases physicians' basic knowledge about common clinical scenarios, and whether ECCE is superior to the passive diffusion of information through the printed version of <it>Clinical Evidence</it>.</p> <p>Design</p> <p>All Italian doctors naĂŻve to ECCE will be randomised to three groups. Group one will have access to ECCE for <it>Clinical Evidence </it>chapters and vignettes lot A and will provide control data for <it>Clinical Evidence </it>chapters and vignettes lot B; group two vice versa; group three will receive the concise printed version of <it>Clinical Evidence</it>. There are in fact two designs: a before and after pragmatic trial utilising a two by two incomplete block design (group one versus group two) and a classical design (group one and two versus group three). The primary outcome will be the retention of <it>Clinical Evidence </it>contents assessed from the scores for clinical vignettes selected from ECCE at least six months after the intervention. To avoid test-retest effects, we will randomly select vignettes out of lot A and lot B, avoiding repetitions. In order to preserve the comparability of lots, we will select vignettes with similar, optimal psychometric characteristics.</p> <p>Trial registration</p> <p>ISRCTN27453314</p

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR &lt; 60 mL/min/1.73 m2) or eGFR reduction &gt; 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR &lt; 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR &gt; 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Innovative biomaterials for bone regrowth

    Get PDF
    The regenerative medicine, a new discipline that merges biological sciences and the fundamental of engineering to develop biological substitutes, has greatly benefited from recent advances in the material engineering and the role of stem cells in tissue regeneration. Regenerative medicine strategies, involving the combination of biomaterials/scaffolds, cells, and bioactive agents, have been of great interest especially for the repair of damaged bone and bone regrowth. In the last few years, the life expectancy of our population has progressively increased. Aging has highlighted the need for intervention on human bone with biocompatible materials that show high performance for the regeneration of the bone, efficiently and in a short time. In this review, the different aspects of tissue engineering applied to bone engineering were taken into consideration. The first part of this review introduces the bone cellular biology/molecular genetics. Data on biomaterials, stem cells, and specific growth factors for the bone regrowth are reported in this review

    The C4 Atriplex halimus vs. the C3 Atriplex hortensis: Similarities and Differences in the Salinity Stress Response

    No full text
    Soil properties and the ability to sustain agricultural production are seriously impaired by salinity. The cultivation of halophytes is seen as a solution to cope with the problem. In this framework, a greenhouse pot experiment was set up to assess salinity response in the perennial C4 species Atriplex halimus, and in the following three cultivars of the annual C3 Atriplex hortensis: green, red, and scarlet. The four genotypes were grown for 35 days with water salinity (WS) ranging from 0 to 360 mM NaCl. Plant height and fresh weight (FW) increased at 360 vs. 0 WS. The stomatal conductance (GS) and transpiration rate (E) were more severely affected by salinity in the C4 A. halimus than in the C3 species A. hortensis. This was reflected in a lower leaf water potential indicating stronger osmotic adjustment, and a higher relative water content associated with more turgid leaves, in A. halimus than A. hortensis. In a PCA including all the studied traits, the GS and E negatively correlated to the FW, which, in turn, positively correlated with Na concentration and intrinsic water use efficiency (iWUE), indicating that reduced gas exchange associated with Na accumulation contributed to sustain iWUE under salinity. Finally, FTIR spectroscopy showed a reduced amount of pectin, lignin, and cellulose under salinity, indicating a weakened cell wall structure. Overall, both species were remarkably adapted to salinity: From an agronomic perspective, the opposite strategies of longer vs. faster soil coverage, involved by the perennial A. halimus vs. the annual A. hortensis cv. scarlet, are viable natural remedies for revegetating marginal saline soils and increasing soil organic carbon

    Osteoconductivity of Complex Biomaterials Assayed by Fluorescent-Engineered Osteoblast-like Cells

    No full text
    Biomaterials employed for the bone regeneration can be assayed for specific features such as osteoconductivity and gene expression. In this study, the composite HA/collagen/chondroitin-sulfate biomaterial was investigated using an engineered human cell line, named Saos-eGFP. This cell line, a green fluorescent engineered human osteoblast-like cell, was employed as a cellular model for the in vitro study of biomaterial characteristics. The cytotoxicity was indirectly evaluated by fluorescence detection, osteoconductivity was assayed both by fluorescence and electron microscope analysis as well as cell morphology, whereas the RT-PCR technique was employed to assay gene expression. Saos-eGFP cells viability detection after 24 and 96 h of incubation showed that biomaterial enables the adhesion and proliferation of seeded cells as well as that of the plastic surface, the control. Fluorescence and scanning electron microscopy (SEM) analyses indicated that Saos-eGFP cells were homogeneously distributed on the HA granule surfaces, exhibiting cytoplasmic bridges, and were localized on the collagenchondroitin sulfate extra-cellular matrix. An expression analysis of specific genes encoding for differentiation markers, showed that biomaterial assayed did not alter the osteogenic pathway of the Saos-eGFP cell line. Our assays confirm the cytocompatibility of this biomaterial, suggesting an osteoconductive capacity mediated by its chemical contents. We showed that the Saos-eGFP cellular model is suitable for in vitro biomaterial assays, and more specifically for assessing osteoconductivity. This result suggests that the cytocompatibility and osteoconductive features of the biomaterial assayed as bone substitute, could have a positive downstream effect on implant osteointegration

    Mesenchymal stem cells from patients to assay bone graft substitutes.

    No full text
    Bio-engineered scaffolds used in orthopedic clinical applications induce different tissue responses after implantation. In this study, non-stoichiometric Mg(2+) ions and stoichiometric apatites, which are used in orthopedic surgery as bone substitutes, have been assayed in vitro with human adult mesenchymal stem cells (hMSC) to evaluate cytocompatibility and osteoconductivity. hMSCs from the bone marrow aspirates of orthopedic patients were isolated and analyzed by flow cytometry for the surface markers Stro1, CD29, CD44, CD71, CD73, CD90, CD105 (positive) and CD45, CD235 (negative). The hMSC were analyzed for self-renewal capacity and for differentiation potential. The hMSC, which were grown on different biomaterials, were analyzed for (i) cytotoxicity by AlamarBlue metabolic assay, (ii) osteoconductivity by ELISA for activated focal adhesion kinase, (iii) cytoskeleton organization by fluorescence microscopy and (iv) cell morphology which was investigated by Scan Electron Microscopy (SEM). Results indicate that isolated cell populations agree with minimal criteria for defining hMSC cultures. Non-stoichiometric Mg(2+) and stoichiometric apatites, in granular form, represent a more favorable environment for mesenchymal stem cell adhesion and growth compared to the non-stoichiometric Mg(2+) apatite, in nano-structured paste form. This study indicates that different forms of biomaterials modulate osteoconductivity and cellular growth by differential activation focal adhesion kinase
    corecore