39 research outputs found

    Chemical distribution of HII regions towards the Galactic anticentre

    Full text link
    We study the physical and chemical properties of a sample of HII regions located at RG >11 kpc and present the radial distribution of abundances towards the Galaxy anticentre. We carried out optical spectroscopic observations of nine HII regions with the WHT. The sample was increased by searching the literature for optical observations of regions towards the Galactic anticentre, re-analysing them to obtain a single sample of 23 objects covering the Galactocentric radius from 11 kpc to 18 kpc to be processed in a homogeneous and consistent manner. Accurate electron densities and temperatures of several ionic species were derived in 13 HII regions. These physical parameters were applied to the spectra to determine direct total chemical abundances. For those regions without direct estimations of temperature, chemical abundances were derived by performing tailor-made photoionisation models and/or by using an empirical relation obtained from radio recombination and optical temperatures. We performed weighted least-squares fits to the distribution of the derived abundances along the Galactocentric distances to study the radial gradients of metallicity. The distributions O/H, N/H, S/H, and Ar/H towards the anticentre can be represented by decreasing linear radial gradients, while in the case of N/O abundances the radial distribution is better fitted with a two-zone model. The He/H radial gradient is presented here for the first time; we find a slope that is not significantly different from zero. The derived gradient for oxygen shows a clear decrease with distance with a slope of -0.053dex/kpc. Although a shallower slope at large Galactocentric distances is suggested by our data, the flattening of the distribution cannot be confirmed and more objects towards the anticentre need to be studied in order to establish the true form of the metallicity gradient.Comment: Accepted for publication in Section 5. Galactic structure, stellar clusters and populations of Astronomy and Astrophysics. The official date of acceptance is 13/09/2016. 19 pages, 15 figures and 10 table

    Cambios en el ambiente acústico en la ZEC Franja Marina Teno-Rasca durante el confinamiento por el COVID-19.

    Get PDF
    El ambiente acústico marino natural o “paisaje sonoro” es, en el caso de Canarias, virtualmente desconocido y, sin embargo, afectado por la contaminación acústica antes de ser descifrado. En este trabajo se analiza el ambiente sonoro en la ZEC Franja Marina Teno-Rasca y se investiga la contribución de ruido antrópico con un análisis comparativo de niveles durante la reducción del tráfico debida al confinamiento durante el COVID-19 y a posteriori. Se utilizaron sistemas autónomos de grabación acústica con frecuencias de muestreo de 96 y 144 kHz, situados en un fondeo cercano a Puerto Colón y en una boya oceánica en la cota de 1000 m. Los resultados muestran diferencias considerables del ruido de fondo durante y después del confinamiento: unos 7 dB en la banda 10Hz-10kHz dominantes en el ruido del tráfico marino, y unos 2-3 dB a frecuencias mayores de 10 kHz que atribuimos a motos de agua. Comparando el nivel de ruido de fondo mínimo y máximo en los datos de la boya oceánica se encuentra una diferencia de unos 25 dB, debido a una intensa actividad pesquera en la zona durante el confinamiento. Por último, se presentan dos casos anecdóticos pero ilustrativos: i) la detección de silbidos de delfín durante el confinamiento hubiera sido enmascarada por los niveles típicos de ruido registrados post confinamiento; ii) el descubrimiento de una biofonía no registrada previamente que podría estar causada por una especie abundante en Canarias, la catalufa Heteropriacanthus cruentatusThe natural marine acoustic environment or “soundscape” is, in the case of the Canary Islands, virtually unknown and, however, affected by noise pollution before being deciphered. In this work, the sound environment in the Teno-Rasca Marine ZEC is analyzed and the contribution of anthropic noise is investigated with a comparative analysis of levels during the reduction in traffic due to confinement during COVID-19 and afterwards. Autonomous acoustic recording systems were used with sampling frequencies of 96 and 144 kHz, located in an anchorage near Puerto Colón and in an ocean buoy at 1000 m depth. The results show considerable differences in background noise during and after confinement: about 7 dB in the 10Hz-10kHz band, which is dominant in marine traffic noise, and about 2-3 dB at frequencies greater than 10 kHz that we attribute to jet skis. . Comparing the minimum and maximum background noise level in the ocean buoy data, a difference of about 25 dB is found, due to intense fishing activity in the area during confinement. Finally, two anecdotal but illustrative cases are presented: i) the detection of dolphin whistles during confinement would have been masked by the typical noise levels recorded post confinement; ii) the discovery of a biophony not previously recorded that could be caused by an abundant species in the Canary Islands, the catalufa Heteropriacanthus cruentatu

    On the computation of interstellar extinction in photoionized nebulae

    Full text link
    Ueta & Otsuka (2021) proposed a method, named as the "Proper Plasma Analysis Practice", to analyze spectroscopic data of ionized nebulae. The method is based on a coherent and simultaneous determination of the reddening correction and physical conditions in the nebulae. The same authors (Ueta & Otsuka 2022, UO22) reanalyzed the results of Galera-Rosillo et al. (2022, GR22) on nine of the brightest planetary nebulae in M31. They claim that, if standard values of the physical conditions are used to compute the extinction instead of their proposed method, extinction correction is underestimated by more than 50% and hence, ionic and elemental abundance determinations, especially the N/O ratio, are incorrect. Several tests were performed to assess the accuracy of the results of GR22, when determining: i) the extinction coefficient, ii) the electron temperature and density, and iii) the ionic abundances. In the latter case, N+ /H+ ionic abundance was recalculated using both H_alpha and H_beta as the reference H I emissivity. The analysis shows that the errors introduced by adopting standard values of the plasma conditions by GR22 are small, within their quoted uncertainties. On the other hand, the interstellar extinction in UO22 is found to be overestimated for five of the nine nebulae considered. This propagates into their analysis of the properties of the nebulae and their progenitors. The python notebook used to generate all the results presented in this paper are of public access on a Github repository. The results from GR22 are proven valid and the conclusions of the paper hold firmly. Although the PPAP is, in principle, a recommended practice, we insist that it is equally important to critically assess which H I lines are to be included in the determination of the interstellar extinction coefficient, and to assert that physical results are obtained for the undereddened line ratios.Comment: Accepted for publication in A&A Lette

    Jets, knots and tails in planetary nebulae: NGC 3918, K 1-2 and Wray 17-1

    Get PDF
    We analyze optical images and high-resolution, long-slit spectra of three planetary nebulae which possess collimated, low-ionization features. NGC 3918 is composed of an inner, spindle-shaped shell mildly inclined with respect to the plane of the sky. Departing from the polar regions of this shell, we find a two-sided jet expanding with velocities which increase linearly with distance from 50 to 100 km/s. The jet is probably coeval with the inner shell (with the age of approximately 1000 D yr, where D is the distance in kpc), suggesting that its formation should be ascribed to the same dynamical processes which also shaped the main nebula, and not to a more recent mass loss episode. We discuss the formation of the aspherical shell and jet in the light of current hydrodynamical and magnetohydrodynamical theories. K 1-2 is a planetary nebula with a close binary nucleus which shows a collimated string of knots embedded in a diffuse, elliptical shell. The knots expand with a velocity similar to that of the elliptical nebula (25 km/s), except for an extended tail located out of the main nebula, which linearly accelerates up to 45 km/s. We estimate an inclination on the line of the sight of 40 degres for the string of knots; once the orientation of the orbit is also determined, this information will allow us to test the prediction of current theories of the occurrence of polar jets from close binary systems. Wray 17-1 has a complex morphology, showing two pairs of low-ionization structures located in almost perpendicular directions from the central star, and embedded in a large, diffuse nebula. The two pairs show notable similarities and differences, and their origin is very puzzling.Comment: 20 pages plus 10 figures. ApJ recently published (ApJ 523, 721 (1999)

    The physical parameters, excitation and chemistry of the rim, jets and knots of the planetary nebula NGC 7009

    Get PDF
    We present long-slit optical spectra along the major axis of the planetary nebula NGC 7009. These data allow us to discuss the physical, excitation and chemical properties of all the morphological components of the nebula, including its remarkable systems of knots and jets. The main results of this analysis are the following: i) the electron temperature throughout the nebula is remarkably constant, T_e[OIII] = 10200K; ii) the bright inner rim and inner pair of knots have similar densities of N_e = 6000cm^{-3}, whereas a much lower density of N_e = 1500cm^{-3} is derived for the outer knots as well as for the jets; iii) all the regions (rim, inner knots, jets and outer knots) are mainly radiatively excited; and iv) there are no clear abundance changes across the nebula for He, O, Ne, or S. There is a marginal evidence for an overabundance of nitrogen in the outer knots (ansae), but the inner ones (caps) and the rim have similar N/H values that are at variance with previous results. Our data are compared to the predictions of theoretical models, from which we conclude that the knots at the head of the jets are not matter accumulated during the jet expansion through the circumstellar medium, neither can their origin be explained by the proposed HD or MHD interacting-wind models for the formation of jets/ansae, since the densities as well as the main excitation mechanisms of the knots, disagree with model predictions.Comment: Figure 1 was changed because features were misidentified in the previous version. 17 pages including 5 figures and 3 tables. ApJ in press. Also available at http://www.iac.es/galeria/denise

    Knots in the outer shells of the planetary nebulae IC 2553 and NGC 5882

    Get PDF
    We present images and high-resolution spectra of the planetary nebulae IC 2553 and NGC 5882. Spatio-kinematic modeling of the nebulae shows that they are composed of a markedly elongated inner shell, and of a less aspherical outer shell expanding at a considerably higher velocity than the inner one. Embedded in the outer shells of both nebulae are found several low-ionization knots. In IC 2553, the knots show a point-symmetric distribution with respect to the central star: one possible explanation for their formation is that they are the survivors of pre-existing point-symmetric condensations in the AGB wind, a fact which would imply a quite peculiar mass-loss geometry from the giant progenitor. In the case of NGC 5882, the lack of symmetry in the distribution of the observed low-ionization structures makes it possible that they are the result of in situ instabilities.Comment: 20 pages including 1 table and 6 figures. ApJ accepted. Also available at http://andromeda.roque.ing.iac.es/~sanchez/ingpub/index2000.htm

    The large-scale ionised outflow of CH Cygni

    Get PDF
    HST and ground-based [OII} and [NII] images obtained from 1996 to 1999 reveal the existence of a ionised optical nebula around the symbiotic binary CH Cyg extending out to 5000 A.U. from the central stars. The observed velocity range of the nebula, derived from long-slit echelle spectra, is of 130 km/s. In spite of its complex appearence, the velocity data show that the basic morphology of the inner regions of the optical nebula is that of a bipolar (or conical) outflow extending nearly along the plane of the sky out to some 2000 A.U. from the centre. Even if the extension of this bipolar outflow and its position angle are consistent with those of the radio jet produced in 1984 (extrapolated to the time of our optical imagery), no obvious counterpart is visible of the original, dense radio bullets ejected by the system. We speculate that the optical bipolar outflow might be the remannt of the interaction of the bullets with a relatively dense circumstellar medium.Comment: 8 text pages + 3 figures (jpeg). ApJ in press. For a full PostScript version with figures inline see ftp://ftp.ll.iac.es/pub/research/preprints/PP252001.ps.g

    High-velocity collimated outflows in planetary nebulae: NGC 6337, He 2-186, and K 4-47

    Full text link
    We have obtained narrow-band images and high-resolution spectra of the planetary nebulae NGC 6337, He 2-186, and K 4-47, with the aim of investigating the relation between their main morphological components and several low-ionization features present in these nebulae. The data suggest that NGC 6337 is a bipolar PN seen almost pole on, with polar velocities higher than 200 km/s. The bright inner ring of the nebula is interpreted to be the "equatorial" density enhancement. It contains a number of low-ionization knots and outward tails that we ascribe to dynamical instabilities leading to fragmentation of the ring or transient density enhancements due to the interaction of the ionization front with previous density fluctuations in the ISM. The lobes show a pronounced point-symmetric morphology and two peculiar low-ionization filaments whose nature remains unclear. The most notable characteristic of He 2-186 is the presence of two high-velocity (higher than 135 km/s) knots from which an S-shaped lane of emission departs toward the central star. K 4-47 is composed of a compact core and two high-velocity, low-ionization blobs. We interpret the substantial broadening of line emission from the blobs as a signature of bow shocks, and using the modeling of Hartigan, Raymond, & Hartman (1987), we derive a shock velocity of 150 km/s and a mild inclination of the outflow on the plane of the sky. We discuss possible scenarios for the formation of these nebulae and their low-ionization features. In particular, the morphology of K 4-47 hardly fits into any of the usually adopted mass-loss geometries for single AGB stars. Finally, we discuss the possibility that point-symmetric morphologies in the lobes of NGC 6337 and the knots of He 2-186 are the result of precessing outflows from the central stars.Comment: 16 pages plus 7 figures, ApJ accepted. Also available at http://www.iac.es/publicaciones/preprints.htm
    corecore