13 research outputs found

    Geoelectrical Surveys for Characterization of the Coastal Saltwater Intrusion in Metapontum Forest Reserve (Southern Italy)

    Get PDF
    A geoelectrical survey was carried out in the Metapontum Forest Reserve located along the Ionian coast of the Basilicata region (Southern Italy). In this work we used the method of two-dimensional electrical resistivity tomography for obtaining high-resolution electrical images in the investigated site. In particular, three electrical resistivity tomography, all orthogonal to the coastline, in the investigated area were carried out. To complete and integrate the geophysical data, soil and groundwater samplings, seventeen and five, respectively, were analyzed using chemical physical techniques. Geoelectrical survey, supported by laboratory analysis of soil and water samples have revealed the presence of a process of saltwater in coastal Forest Reserve of Metapontum, which have caused the decline of the existing pine forest with the consequent erosion and desertification problems. The results have disclosed the way to identify and discriminate large areas affected by intensive soil salinization and high resolution electrical images of the subsurface electrical resistivity plays a key role in delineating the saltwater intrusion front in coastal areas. Furthermore, our integrated study represents a contribution to the future programs for the protection, planning, and management of the terrestrial and marine resources in this coastal area

    Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    Get PDF
    The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT)-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring). In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy) and representing one of the test beds of the project

    The Cultivation of Industrial Hemp as Alternative Crop in a Less-Favoured Agricultural Area in Southern Italy: The Pignola Case Study

    No full text
    Industrial hemp cultivation has the potential to be an environmentally friendly and highly sustainable crop and it can fit well in crop rotation practices to increase soil fertility. For this study, two commercial varieties of industrial hemp with low tetrahydrocannabinol (THC) content were used to test its reintroduction chance in the study area and to evaluate its response in terms of yield with respect to the soil and drought conditions of the area. During the vegetative period, non-invasive measures of the soil’s water status were performed using Watermark probes and ground penetrating radar. In addition, hemp crops vigour monitoring was performed by means of Sentinel 2 multispectral optical remote sensing data. In the absence of precipitation and/or irrigation, and with high consumption of soil water by the hemp crop due to evapotranspiration, the crop has completed its cycle thanks to its resistance to water stress conditions. From the soil water and satellite monitoring results, there is a good agreement with the field results in terms of water stress and its effects on crop vigour. This study contributes to a better understanding of the possibility of hemp crop reintroduction in areas where water deficit occurs, which could open up the opportunity for selecting hemp crop cultivars that can be grown under different agro-ecological conditions and are also of great commercial interest for decision makers involved in sustainable crop management and in the reduction of fertilizers and pollutants released into the environment

    Analysis of landscape evolution in a vulnerable coastal area under natural and human pressure

    Get PDF
    To preserve integrity and functioning of coastal ecosystems services, monitoring and protection actions have to be realized on an ecosystem perspective and consider an integrated observing approach. We implemented a multidisciplinary study, based on remote sensing and geophysical techniques, landscape ecology tools, and geospatial data analysis for monitoring a coastal area (Basilicata Ionian coast) with a high concentration of forest ecosystems services: five Natura 2000 protected sites, intensive agriculture, and touristic infrastructures. The analysis of landscape evolution performed within five protected sites over about 30 years (1985–2013) shows the presence of different processes acting along the investigated coast. Where coniferous forests were involved in marked fragmentation processes geophysical measurements highlighted saltwater infiltrations in superficial layers. Since severe shoreline changes interested the investigated littoral, erosional processes could have increased the saltwater intrusion phenomena favoring the forest degradation and limiting its recovery after fires. Touristic activities do not seem to alter the forest evolution except for very localized segments. The implemented study suggests that the integration of remote sensing and in situ information coupled with landscape ecology perception can be a suitable support tool for planning and management activities in coastal areas (e.g. ecological interventions, and earthen block or barrage construction)

    Soil Moisture Retrieval by Integrating TASI-600 Airborne Thermal Data, WorldView 2 Satellite Data and Field Measurements: Petacciato Case Study

    No full text
    Soil moisture (SM) plays a fundamental role in the terrestrial water cycle and in agriculture, with key applications such as the monitoring of crop growing and hydrogeological management. In this study, a calibration procedure was applied to estimate SM based on the integration of in situ and airborne thermal remote sensing data. To this aim, on April 2018, two airborne campaigns were carried out with the TASI-600 multispectral thermal sensor on the Petacciato (Molise, Italy) area. Simultaneously, soil samples were collected in different agricultural fields of the study area to determine their moisture content and the granulometric composition. A WorldView 2 high-resolution visible-near infrared (VNIR) multispectral satellite image was acquired to calculate the albedo of the study area to be used together with the TASI images for the estimation of the apparent thermal inertia (ATI). Results show a good correlation (R2 = 0.62) between the estimated ATI and the SM of the soil samples measured in the laboratory. The proposed methodology has allowed us to obtain a SM map for bare and scarcely vegetated soils in a wide agricultural area in Italy which concerns cyclical hydrogeological instability phenomena

    A new combined wavelet methodology: implementation to GPR and ERT data obtained in the Montagnole experiment

    Get PDF
    International audienceGround penetrating radar (GPR) and electric resistivity tomography (ERT) are well assessed and accurate geophysical methods for the investigation of subsurface geological sections. In this paper, we present the joint exploitation of these methods at the Montagnole (French Alps) experimental site with the final aim to study and monitor effects of possible catastrophic rockslides in transport infrastructures. The overall goal of the joint GPR–ERT deployment considered here is the careful monitoring of the subsurface structure before and after a series of high energetic mechanical impacts at ground level. It is known that factors such as the ambiguity of geophysical field examination, the complexity of geological scenarios and the low signal-to-noise ratio affect the possibility of building reliable physical–geological models of subsurface structure. Here, we applied to the GPR and ERT methods at the Montagnole site, recent advances in wavelet theory and data mining. The wavelet approach was specifically used to obtain enhanced images (e.g. coherence portraits) resulting from the integration of the different geophysical fields. This methodology, based on the matching pursuit combined with wavelet packet dictionaries, permitted us to extract desired signals under different physical–geological conditions, even in the presence of strongly noised data. Tools such as complex wavelets employed for the coherence portraits, and combined GPR–ERT coherency orientation angle, to name a few, enable non-conventional operations of integration and correlation in subsurface geophysics to be performed. The estimation of the above-mentioned parameters proved useful not only for location of buried inhomogeneities but also for a rough estimation of their electromagnetic and related properties. Therefore, the combination of the above approaches has allowed us to set up a novel methodology, which may enhance the reliability and confidence of each separate geophysical method and their integration
    corecore