28 research outputs found

    PKC stimulated by glucagon decreases UT-A1 urea transporter expression in rat IMCD

    No full text
    It is well-known that glucagon increases fractional excretion of urea in rats after a protein intravenous infusion. This effect was investigated by using: (a) in vitro microperfusion technique to measure [(14)C]-urea permeability (Pu x 10(-5) cm/s) in inner medullary collecting ducts (IMCD) from normal rats in the presence of 10(-7) M of glucagon and in the absence of vasopressin and (b) immunoblot techniques to determine urea transporter expression in tubule suspension incubated with the same glucagon concentration. Seven groups of IMCDs (n = 47) were studied. Our results revealed that: (a) glucagon decreased urea reabsorption dose-dependently; (b) the glucagon antagonist des-His(1)-[Glu(9)], blocked the glucagon action but not vasopressin action; (c) the phorbol myristate acetate, decreased urea reabsorption but (d) staurosporin, restored its effect; e) staurosporin decreased glucagon action, and finally, (f) glucagon decreased UT-A1 expression. We can conclude that glucagon reduces UT-A1 expression via a glucagon receptor by stimulating PKC.CNPq Conselho Nacional de PesquisaFAPESP Fundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao Faculdade de MedicinaLaboratorios de Investigacao Medica do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo FM-US

    Aquaporin 2 expression increased by glucagon in normal rat inner medullary collecting ducts

    No full text
    Yano Y, Cesar KR, Araujo M, Rodrigues Jr. AC, Andrade LC, Magaldi AJ. Aquaporin 2 expression increased by glucagon in normal rat inner medullary collecting ducts. Am J Physiol Renal Physiol 296: F54-F59, 2009. First published October 1, 2008; doi: 10.1152/ajprenal.90367.2008.-It is well known that Glucagon (Gl) is released after a high protein diet and participates in water excretion by the kidney, principally after a protein meal. To study this effect in in vitro perfused inner medullary collecting ducts (IMCD), the osmotic water permeability (Pf; mu m/s) at 37 degrees C and pH 7.4 in normal rat IMCDs (n = 36) perfused with Ringer/HCO(3) was determined. Gl (10(-7) M) in absence of Vasopressin (AVP) enhanced the Pf from 4.38 +/- 1.40 to 11.16 +/- 1.44 mu m/s (P < 0.01). Adding 10(-8), 10(-7), and 10(-6) M Gl, the Pf responded in a dose-dependent manner. The protein kinase A inhibitor H8 blocked the Gl effect. The specific Gl inhibitor, des-His(1)-[Glu(9)] glucagon (10(-7) M), blocked the Gl-stimulated Pf but not the AVP-stimulated Pf. There occurred a partial additional effect between Gl and AVP. The cAMP level was enhanced from the control 1.24 +/- 0.39 to 59.70 +/- 15.18 fm/mg prot after Gl 10(-7) M in an IMCD cell suspension. The immunoblotting studies indicated an increase in AQP2 protein abundance of 27% (cont 100.0 +/- 3.9 vs. Gl 127.53; P = 0.0035) in membrane fractions extracted from IMCD tubule suspension, incubated with 10(-6) M Gl. Our data showed that 1) Gl increased water absorption in a dose-dependent manner; 2) the anti-Gl blocked the action of Gl but not the action of AVP; 3) Gl stimulated the cAMP generation; 4) Gl increased the AQP2 water channel protein expression, leading us to conclude that Gl controls water absorption by utilizing a Gl receptor, rather than a AVP receptor, increasing the AQP2 protein expression.Conselho Nacional de Pesquisa (CNPqCNPq National Counsel for Scientific and Technological Development)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo FAPESPFoundationFundacao Faculdade de Medicina (FFMSchool of Medicine Foundation)Laboratorios de Investigacao Medica do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo FM-US

    Lp25 membrane protein from pathogenic Leptospira spp. is associated with rhabdomyolysis and oliguric acute kidney injury in a guinea pig model of leptospirosis.

    No full text
    Acute kidney injury (AKI) from leptospirosis is frequently nonoliguric with hypo- or normokalemia. Higher serum potassium levels are observed in non-survivor patients and may have been caused by more severe AKI, metabolic disarrangement, or rhabdomyolysis. An association between the creatine phosphokinase (CPK) level and maximum serum creatinine level has been observed in these patients, which suggests that rhabdomyolysis contributes to severe AKI and hyperkalemia. LipL32 and Lp25 are conserved proteins in pathogenic strains of Leptospira spp., but these proteins have no known function. This study evaluated the effect of these proteins on renal function in guinea pigs. Lp25 is an outer membrane protein that appears responsible for the development of oliguric AKI associated with hyperkalemia induced by rhabdomyolysis (e.g., elevated CPK, uric acid and serum phosphate). This study is the first characterization of a leptospiral outer membrane protein that is associated with severe manifestations of leptospirosis. Therapeutic methods to attenuate this protein and inhibit rhabdomyolysis-induced AKI could protect animals and patients from severe forms of this disease and decrease mortality

    Representative light micrographs of Hematoxylin-Eosin stain.

    No full text
    <p>2a (Ec), 2b (Ec+NAC) and 2c (NAC+Ec) show areas of necrosis (*) and inflammatory infiltrations (macrophages)(arrows). 2d (Allo+Ec) shows no necrosis and slight inflammatory infiltration.</p

    Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage

    No full text
    <div><p>Background</p><p>Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used.</p><p>Methods</p><p>Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.).</p><p>Results</p><p>Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo.</p><p>Conclusion</p><p>Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia.</p></div
    corecore