72 research outputs found

    Conformable nanowire-in-nanofiber hybrids for low-threshold optical gain in the ultraviolet

    Full text link
    The miniaturization of diagnostic devices that exploit optical detection schemes requires the design of light-sources combining small size, high performance for effective excitation of chromophores, and mechanical flexibility for easy coupling to components with complex and non-planar shapes. Here, ZnO nanowire-in-fiber hybrids with internal architectural order are introduced, exhibiting a combination of polarized stimulated emission, low propagation losses of light modes, and structural flexibility. Ultrafast transient absorption experiments on the electrospun material show optical gain which gives rise to amplified spontaneous emission, with threshold lower than the value found in films. These systems are highly flexible and can conveniently conform to curved surfaces, which makes them appealing active elements for various device platforms, such as bendable lasers, optical networks and sensors, as well as for application in bioimaging, photo-crosslinking, and optogenetics.Comment: 50 pages, 17 figures, 1 table, ACS Nano, 202

    Ionic homeostasis in brain conditioning

    Get PDF
    Most of the current focus on developing neuroprotective therapies is aimed at preventing neuronal death. However, these approaches have not been successful despite many years of clinical trials mainly because the numerous side effects observed in humans and absent in animals used at preclinical level. Recently, the research in this field aims to overcome this problem by developing strategies which induce, mimic, or boost endogenous protective responses and thus do not interfere with physiological neurotransmission. Preconditioning is a protective strategy in which a subliminal stimulus is applied before a subsequent harmful stimulus, thus inducing a state of tolerance in which the injury inflicted by the challenge is mitigated. Tolerance may be observed in ischemia, seizure, and infection. Since it requires protein synthesis, it confers delayed and temporary neuroprotection, taking hours to develop, with a pick at 1-3 days. A new promising approach for neuroprotection derives from post-conditioning, in which neuroprotection is achieved by a modified reperfusion subsequent to a prolonged ischemic episode. Many pathways have been proposed as plausible mechanisms to explain the neuroprotection offered by preconditioning and post-conditioning. Although the mechanisms through which these two endogenous protective strategies exert their effects are not yet fully understood, recent evidence highlights that the maintenance of ionic homeostasis plays a key role in propagating these neuroprotective phenomena. The present article will review the role of protein transporters and ionic channels involved in the control of ionic homeostasis in the neuroprotective effect of ischemic preconditioning and post-conditioning in adult brain, with particular regards to the Na(+)/Ca2(+) exchangers (NCX), the plasma membrane Ca2(+)-ATPase (PMCA), the Na(+)/H(+) exchange (NHE), the Na(+)/K(+)/2Cl(-) cotransport (NKCC) and the acid-sensing cation channels (ASIC). Ischemic stroke is the third leading cause of death and disability. Up until now, all clinical trials testing potential stroke neuroprotectants failed. For this reason attention of researchers has been focusing on the identification of brain endogenous neuroprotective mechanisms activated after cerebral ischemia. In this context, ischemic preconditioning and ischemic post-conditioning represent two neuroprotecive strategies to investigate in order to identify new molecular target to reduce the ischemic damage

    High-Risk Siblings without Autism: Insights from a Clinical and Eye-Tracking Study

    Get PDF
    Joint attention (JA)—the human ability to coordinate our attention with that of other people—is impaired in the early stage of Autism Spectrum Disorder (ASD). However, little is known about the JA skills in the younger siblings of children with ASD who do not develop ASD at 36 months of age [high-risk (HR)-noASD]. In order to advance our understanding of this topic, a prospective multicenter observational study was conducted with three groups of toddlers (age range: 18–33 months): 17 with ASD, 19 with HR-noASD and 16 with typical development (TD). All subjects underwent a comprehensive clinical assessment and an eye-tracking experiment with pre-recorded stimuli in which the visual patterns during two tasks eliciting initiating joint attention (IJA) were measured. Specifically, fixations, transitions and alternating gaze were analyzed. Clinical evaluation revealed that HR-noASD subjects had lower non-verbal cognitive skills than TD children, while similar levels of restricted and repetitive behaviors and better social communication skills were detected in comparison with ASD children. Eye-tracking paradigms indicated that HR-noASD toddlers had visual patterns resembling TD in terms of target-object-to-face gaze alternations, while their looking behaviors were similar to ASD toddlers regarding not-target-object-to-face gaze alternations. This study indicated that high-risk, unaffected siblings displayed a shared profile of IJA-eye-tracking measures with both ASD patients and TD controls, providing new insights into the characterization of social attention in this group of toddlers

    Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach

    Get PDF
    We introduce a broadband single-pixel spectro-temporal fluorescence detector, combining time-correlated single photon counting (TCSPC) with Fourier transform (FT) spectroscopy. A birefringent common-path interferometer (CPI) generates two time-delayed replicas of the sample’s fluorescence. Via FT of their interference signal at the detector, we obtain a two-dimensional map of the fluorescence as a function of detection wavelength and emission time, with high temporal and spectral resolution. Our instrument is remarkably simple, as it only requires the addition of a CPI to a standard single-pixel TCSPC system, and it shows a readily adjustable spectral resolution with inherently broad bandwidth coverag

    Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach

    Get PDF
    We introduce a broadband single-pixel spectro-temporal fluorescence detector, combining time-correlated single photon counting (TCSPC) with Fourier transform (FT) spectroscopy. A birefringent common-path interferometer (CPI) generates two time-delayed replicas of the sample's fluorescence. Via FT of their interference signal at the detector, we obtain a two-dimensional map of the fluorescence as a function of detection wavelength and emission time, with high temporal and spectral resolution. Our instrument is remarkably simple, as it only requires the addition of a CPI to a standard single-pixel TCSPC system, and it shows a readily adjustable spectral resolution with inherently broad bandwidth coverage

    Tunable 30 fs light pulses at 1 W power level from a Yb-pumped optical parametric oscillator

    Get PDF
    We report on a Yb-pumped optical parametric oscillator (OPO) that delivers 30 fs pulses with spectral coverage from 680 to 910 nm and an average output power of up to 1.1 W. The resulting peak power is â\u88¼0.5 MW, which is, to the best of our knowledge, the highest ever demonstrated in a femtosecond OPO. The intensity noise remains at a level of 0.2% rms, and rapid wavelength tuning is obtained by simply scanning the resonator length. The performances of the OPO are promising for a variety of applications in nonlinear microscopy and ultrafast spectroscopy

    Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS2.

    Get PDF
    Transition metal dichalcogenides (TMDs) are emerging as promising two-dimensional (2D) semiconductors for optoelectronic and flexible devices. However, a microscopic explanation of their photophysics, of pivotal importance for the understanding and optimization of device operation, is still lacking. Here, we use femtosecond transient absorption spectroscopy, with pump pulse tunability and broadband probing, to monitor the relaxation dynamics of single-layer MoS2 over the entire visible range, upon photoexcitation of different excitonic transitions. We find that, irrespective of excitation photon energy, the transient absorption spectrum shows the simultaneous bleaching of all excitonic transitions and corresponding red-shifted photoinduced absorption bands. First-principle modeling of the ultrafast optical response reveals that a transient bandgap renormalization, caused by the presence of photoexcited carriers, is primarily responsible for the observed features. Our results demonstrate the strong impact of many-body effects in the transient optical response of TMDs even in the low-excitation-density regime

    Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering

    Get PDF
    We introduce interferometric (I) Fourier-transform (FT) stimulated Raman scattering (SRS) to measure the complex nonlinear vibrational susceptibility of molecules. The technique is a simple variation of FT-SRS, which was previously demonstrated to combine the very high sensitivity of single-channel lock-in detection with the spectral resolution afforded by FT spectroscopy. In IFT-SRS, a local oscillator, temporally anticipated with respect to the broadband pump pulse, enables the interferometric detection of both real and imaginary parts of the nonlinear susceptibility, whose spectrum is recorded in the time domain by scanning the delay of the local oscillator using a birefringent common-path interferometer. We apply IFT-SRS to record the complex vibrational response of different solvents and their mixtures. (C) 2018 Author(s)

    Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer

    Get PDF
    The correlation of molecular excitation and emission events provides a powerful multidimensional spectroscopy tool, by relating transitions from electronic ground and excited states through two-dimensional excitation-emission maps. Here we present a compact, fast and versatile Fourier-transform spectrometer, combining absorption and excitation-emission fluorescence spectroscopy in the visible. We generate phase-locked excitation pulse pairs via an inherently stable birefringent wedge-based common-path interferometer, retaining all the advantages of Fourier-transform spectroscopy but avoiding active stabilization or auxiliary tracking beams. We employ both coherent and incoherent excitation sources on dye molecules in solution, with data acquisition times in the range of seconds and minutes, respectively
    • …
    corecore