103 research outputs found

    Environmental Impact Reduction for a Turning Process: Comparative Analysis of Lubrication and Cutting Inserts Substitution Strategies

    Get PDF
    AbstractMachine tools are responsible for a relevant share of environmental impact related to production processes. This is due to their widespread use, the huge energy requirements during operations and the disposable materials involved in the process like scraps, cutting inserts and exhausted oil. This study presents a holistic analysis of the main contributions that are responsible for the environmental impact of the process and the use of the analysis's results to optimize the process setup for a specific case. The factors included in the analysis are: cutting parameters, lubrication strategy and cutting inserts substitution. Regarding the cutting parameters choice, the analysis of the tests carried out highlighted that the best solution is to use the most demanding process parameters in terms of material removal rate, using the tool strength as a constraint. The comparison of alternative lubrication strategies shows the advantage of using dry machining, to be replaced with MQL only when hard-to-cut materials must be machined. Finally, the approach developed to assess the environmental footprint associated to the cutting inserts allowed to define a new substitution rule. The obtained solution is consistent with the usual industrial practice to change the tool when the geometrical tolerances could not be meet anymore, this result is due mainly to the high environmental impact of the production phase of the insert

    Virtual cutting to improve the product tolerances of 5 axes machine tools

    Get PDF

    Design of An Active Workpiece Holder

    Get PDF
    AbstractMilling is one of the most used machining processes thanks to its high flexibility and high achievable quality. The performance of milling machines is constantly increasing, improving the convenience and increasing the competitiveness of this operation. However, the trend of performance improvement has found a technological limit: self-excited vibrations due to the dynamics of the system machine-workpiece-tooling (i.e. chatter). Chatter is the most dangerous dynamic phenomena that could happen during milling; due to its regenerative nature, it could lead the machine and the tooling system to a heavy fault or to the disruption of the workpiece. This paper develops an active workpiece holder that avoids chatter vibrations by a smart actuation of the workpiece. The design of the workpiece holder is a difficult task due to strict product requirements and the need to create a decoupled structure. The decoupling of the structure is a fundamental requirement of the product because this affects the controllability of the system. Axiomatic Design Theory is used to support the definition of the product requirements and the product architecture. After the definition of the optimal structure of the workpiece, the design features are integrated in order to obtain a functional decoupled structure

    Effects of cutting conditions on forces and force coefficients in plunge milling operations

    Get PDF
    The modeling of milling forces is a crucial issue to understand milling processes. In the literature, many force models and experiments to identify force coefficients are found. The objective of this article is to develop a new approach, based on the traditional average force method, able to measure and compute the cutting coefficients for end mills used in plunging operations. This model has been used to evaluate the effect of the radial engagement on the cutting coefficients themselves, proposing a new strategy to update these values for different cutting parameters. This dependency of the cutting coefficient is particularly important for the determination of the stability lobe diagrams, used to predict the chatter conditions. In this article, the method to assess the cutting coefficients, the results of the experimental tests, and the effect of condition-dependent cutting coefficients on process stability are presented

    Milled Surface Generation Model for Chip Thickness Detection in Peripheral Milling

    Get PDF
    AbstractPrediction of forces between tool and workpiece is essential in order to optimize machining and preserve process stability. In the last decades different predictive approaches have been developed: mainly mechanistic and numerical models. Mechanistic models could be applied to a wide range of cutter geometry and workpiece combination, even if a specific tuning, depending on material and application, is always needed. Numerical models could take in account many operative conditions than analytical ones, and allow predicting other parameters like stress, strain rate, temperature distribution, etc., but the computational time required is often unacceptable. The paper presents an innovative hybrid numerical-analytical approach for uncut chip cross-sectional area calculation in 2.5 axis end milling operations. The proposed model uses a mechanistic cutting force model to couple tool and workpiece finite element (FE) models: FE time domain simulations provide to predict effective paths of tool teeth relative to the workpiece, taking into account the dynamics of the entire system; while an appropriate algorithm, developed in Matlab®, allows to achieve a more realistic uncut chip area, from which it is possible to calculate the cutting forces. This approach provides an accurate representation of the machined surface. Simulation is compared with experimental results

    Optimization of WAAM Deposition Patterns for T-crossing Features

    Get PDF
    AbstractAmong emerging additive manufacturing technologies for metallic components, WAAM (Wire and Arc Additive Manufacturing) is one of the most promising. It is an arc based technology characterized by high productivity, high energy efficiency and low raw material cost. Anyway, it has some drawbacks limiting its diffusion in the industry. One is the open issue about the layer deposition strategy that must be manually optimized in order to reduce as possible the residual stress and strains, efficiently matching the geometrical characteristics of the component to build and assure a constant height for each layer. This work deals with the definition of deposition paths for WAAM. The choice of a path must be carried out as a compromise between productivity and material usage efficiency. In the present paper, the process to select an optimized strategy for the manufacturing of T-crossing features will be shown

    Investigation and Correction of Actual Microphone Response for Chatter Detection in Milling Operations

    Get PDF
    Integrating sensors in machine tools for monitoring purpose entails dealing with different issues, not only related to accessibility and safety but also to measureable bandwidth and linearity of the sensors. Those factors could be related to the sensor itself but also to sensor–machine interaction that could drastically affect sensor performances and reliability. This paper presents a dedicated experimental investigation of the actual response of microphone transducer inside the machine-tool chamber, highlighting the effects of the machine-tool chamber in altering response linearity. The identified response is then processed with specifically developed equalization filters to correct the measured response and rescale the amplitude of frequency contributions, as required by most chatter detection techniques. The main aspect of both the experimental identification procedure and the development of an effective correction approach are presented and discussed. Finally, the technique is tested in processing signals acquired in experimental chatter tests to estimate the achievable improvements
    • …
    corecore