415 research outputs found

    Synthesis and optimized formulation for high-capacity manganese fluoride (MnF2) electrodes for lithium-ion batteries

    No full text
    International audienceElectrochemical activity of poorly conductive metal fluorides in Li-ion batteries is contingent on their nanostructuration to reduce diffusion lengths and increase reaction kinetics. In that regard, we optimize the synthesis and electrode formulation of MnF2 to enable sufficient electrochemical activity required to study its electrochemical conversion reaction mechanism. Solvothermal synthesis in a water–ethanol mixture (1:1 Vol.), using Mn acetate and a slight excess of hydrofluoric acid (HF), results in pure phase, nanosized (˜30 nm diameter) rutile-type MnF2 (P42/mnm). High energy ball-milling of MnF2‒carbon mixtures leads to an amorphization of MnF2 and its partial phase transformation to the α-PbO2-type structure, without significant improvement of the electrochemical performance. Changing the electrode binder, however, from typical polyvinylidene fluoride (PVDF) to water-soluble Na-alginate, leads to a significant improvement of the reversibility of the electrochemical reaction. We attribute this drastic improvement to the improved adherence and homogeneity of the electrode film prepared with Na-alginate

    A multimodal analytical toolkit to resolve correlated reaction pathways: the case of nanoparticle formation in zeolites

    No full text
    Unraveling the complex, competing pathways that can govern reactions in multicomponent systems is an experimental and technical challenge. We outline and apply a novel analytical toolkit that fully leverages the synchronicity of multimodal experiments to deconvolute causal from correlative relationships and resolve structural and chemical changes in complex materials. Here, simultaneous multimodal measurements combined diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and angular dispersive X-ray scattering suitable for pair distribution function (PDF), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) analyses. The multimodal experimental data was interpreted via multi-level analysis; conventional analyses of each data series were integrated through meta-analysis involving non-negative matrix factorization (NMF) as a dimensional reduction algorithm and correlation analysis. We apply this toolkit to build a cohesive mechanistic picture of the pathways governing silver nanoparticle formation in zeolite A (LTA), which is key to designing catalytic and separations-based applications. For this Ag-LTA system, the mechanisms of zeolite dehydration, framework flexing, ion reduction, and cluster and nanoparticle formation and transport through the zeolite are elucidated. We note that the advanced analytical approach outline here can be applied generally to multimodal experiments, to take full advantage of the efficiencies and self-consistencies in understanding complex materials and go beyond what can be achieved by conventional approaches to data analysis.ISSN:2041-6520ISSN:2041-653

    Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer

    No full text
    Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air through reaction with atmospheric CO2. This surface impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact versus an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD
    corecore