11 research outputs found

    Reconstitution of TIMP-2 expression in SH-SY5Y neuroblastoma cells by 5-azacytidine is mediated transcriptionally by NF-Y through an inverted CCAAT site

    No full text
    Advanced stage neuroblastomas (NB) exhibit a tissue inhibitor of metalloproteinase (TIMP)-2/matrix metalloproteinase (MMP) imbalance, considered a prerequisite for MMP involvement in tumor progression in vivo. Human SH-SY5Y NB cells exhibit a similar TIMP-2/MMP imbalance that promotes in vitro invasive behavior that is inhibited by exogenous TIMP-2. The DNA methyltransferase inhibitor 5-azacytidine (5-AzaC) redresses this TIMP-2/MMP imbalance, reconstituting TIMP-2 expression, without effecting that of MMP-2, by stimulating TIMP-2 transcription and inhibiting in vitro invasivity of SH-SY5Y cells. 5-AzaC stimulated transcription from a nonmethylated TIMP-2,. promoter reporter gene construct consistent with regulation of a TIMP-2 transactivator. Promoter deletion and point-mutation analysis localized this effect to an inverted CCAAT element at position -73. This element bound specific complexes containing NF-YA and NF-YB proteins in SH-SY5Y nuclear extracts, the binding of which was augmented by 5-AzaC in association with enhanced levels of NF-YB protein and the function of which was confirmed by inhibition using dominant-negative NF-YA. The data highlight a novel indirect methylation-mediated mechanism for regulating the TIMP/MMP equilibrium in NB cells, involving repression of TIMP-2 relative to MMP-2 expression, dependent upon suboptimal NF-Y transcription factor function, which can be reversed by methyltransferase inhibition. (C) 2003 Elsevier Science (USA). All rights reserved

    Doxorubicin-Induced TrkAIII Activation: A Selection Mechanism for Resistant Dormant Neuroblastoma Cells

    No full text
    Patients with advanced neuroblastoma (NB) receive multimodal clinical therapy, including the potent anthracycline chemotherapy drug doxorubicin (Dox). The acquisition of Dox resistance, however, is a major barrier to a sustained response and leads to a poor prognosis in advanced disease states, reinforcing the need to identify and inhibit Dox resistance mechanisms. In this context, we report on the identification and inhibition of a novel Dox resistance mechanism. This mechanism is characterized by the Dox-induced activation of the oncogenic TrkAIII alternative splice variant, resulting in increased Dox resistance, and is blocked by lestaurtinib, entrectinib, and crizotinib tyrosine kinase and LY294002 IP3-K inhibitors. Using time lapse live cell imaging, conventional and co-immunoprecipitation Western blots, RT-PCR, and inhibitor studies, we report that the Dox-induced TrkAIII activation correlates with proliferation inhibition and is CDK1- and Ca2+-uniporter-independent. It is mediated by ryanodine receptors; involves Ca2+-dependent interactions between TrkAIII, calmodulin and Hsp90; requires oxygen and oxidation; occurs within assembled ERGICs; and does not occur with fully spliced TrkA. The inhibitory effects of lestaurtinib, entrectinib, crizotinib, and LY294002 on the Dox-induced TrkAIII and Akt phosphorylation and resistance confirm roles for TrkAIII and IP3-K consistent with Dox-induced, TrkAIII-mediated pro-survival IP3K/Akt signaling. This mechanism has the potential to select resistant dormant TrkAIII-expressing NB cells, supporting the use of Trk inhibitors during Dox therapy in TrkAIII-expressing NBs

    The oncogenic neurotrophin receptor tropomyosin-related kinase variant, TrkAIII

    No full text
    Abstract Oncogenes derived from the neurotrophin receptor tropomyosin-related kinase TrkA act as drivers in sub-populations of a wide-range of human cancers. This, combined with a recent report that both adult and childhood cancers driven by novel oncogenic TrkA chimeric-fusions exhibit profound, long-lived therapeutic responses to the Trk inhibitor Larotrectinib, highlights the need to improve clinical detection of TrkA oncogene-driven cancers in order to maximise this novel therapeutic potential. Cancers potentially driven by TrkA oncogenes include a proportion of paediatric neuroblastomas (NBs) that express the alternative TrkA splice variant TrkAIII, which exhibits exon 6, 7 and 9 skipping and oncogenic-activity that depends upon deletion of the extracellular D4 Ig-like domain. In contrast to fully spliced TrkA, which exhibits tumour suppressor activity in NB and associates with good prognosis, TrkAIII associates with advanced stage metastatic disease, post therapeutic relapse and worse prognosis, induces malignant transformation of NIH-3T3 cells and exhibits oncogenic activity in NB models. TrkAIII induction in NB cells is stress-regulated by conditions that mimic hypoxia or perturbate the ER with potential to change TrkA tumour-suppressing signals into oncogenic TrkAIII signals within the stressful tumour microenvironment. In contrast to cell surface TrkA, TrkAIII re-localises to intracellular pre-Golgi membranes, centrosomes and mitochondria, within which it exhibits spontaneous ligand-independent activation, triggering a variety of mechanisms that promote tumorigenicity and malignant behaviour, which impact the majority of cancer hallmarks. In this review, we present updates on TrkAIII detection and association with human malignancies, the multiple ways TrkAIII exerts oncogenic activity and potential therapeutic approaches for TrkAIII expressing cancers, with particular reference to NB

    Nutraceutical Preventative and Therapeutic Potential in Neuroblastoma: From Pregnancy to Early Childhood

    No full text
    Neuroblastoma (NB) is a highly malignant embryonic extracranial solid tumor that arises from sympathoadrenal neuroblasts of neural crest origin. In addition to genetic factors, NB has been linked to maternal exposure to a variety of substances during pregnancy. Recent interest in the potential of nutrients to prevent cancer and reduce malignancy has resulted in the identification of several nutraceuticals including resveratrol, curcumin, and molecular components of garlic, which together with certain vitamins may help to prevent NB development. As NBs arise during fetal development and progress during early childhood, specific NB inhibiting nutraceuticals and vitamins could enhance the preventative influence of maternal nutrition and breast feeding on the development and early progression of NB. In this article, we review NB inhibitory nutraceuticals and vitamins, their mechanisms of action and expound their potential as maternal nutritional supplements to reduce NB development and progression during fetal growth and early childhood, whilst at the same time enhancing maternal, fetal, and infant health

    The Alternative TrkAIII Splice Variant Targets the Centrosome and Promotes Genetic Instability ▿

    Get PDF
    The hypoxia-regulated alternative TrkAIII splice variant expressed by human neuroblastomas exhibits oncogenic potential, driven by in-frame exon 6 and 7 alternative splicing, leading to omission of the receptor extracellular immunoglobulin C1 domain and several N-glycosylation sites. Here, we show that the TrkAIII oncogene promotes genetic instability by interacting with and exhibiting catalytic activity at the centrosome. This function depends upon intracellular TrkAIII accumulation and spontaneous interphase-restricted activation, in cytoplasmic tyrosine kinase (tk) domain orientation, predominantly within structures that closely associate with the fully assembled endoplasmic reticulum intermediate compartment and Golgi network. This facilitates TrkAIII tk-mediated binding of γ-tubulin, which is regulated by endogenous protein tyrosine phosphatases and geldanamycin-sensitive interaction with Hsp90, paving the way for TrkAIII recruitment to the centrosome. At the centrosome, TrkAIII differentially phosphorylates several centrosome-associated components, increases centrosome interaction with polo kinase 4, and decreases centrosome interaction with separase, the net results of which are centrosome amplification and increased genetic instability. The data characterize TrkAIII as a novel internal membrane-associated centrosome kinase, unveiling an important alternative mechanism to “classical” cell surface oncogenic receptor tk signaling through which stress-regulated alternative TrkAIII splicing influences the oncogenic process

    The Alternative TrkAIII Splice Variant Targets the Centrosome and Promotes Genetic Instability ▿

    Get PDF
    The hypoxia-regulated alternative TrkAIII splice variant expressed by human neuroblastomas exhibits oncogenic potential, driven by in-frame exon 6 and 7 alternative splicing, leading to omission of the receptor extracellular immunoglobulin C1 domain and several N-glycosylation sites. Here, we show that the TrkAIII oncogene promotes genetic instability by interacting with and exhibiting catalytic activity at the centrosome. This function depends upon intracellular TrkAIII accumulation and spontaneous interphase-restricted activation, in cytoplasmic tyrosine kinase (tk) domain orientation, predominantly within structures that closely associate with the fully assembled endoplasmic reticulum intermediate compartment and Golgi network. This facilitates TrkAIII tk-mediated binding of γ-tubulin, which is regulated by endogenous protein tyrosine phosphatases and geldanamycin-sensitive interaction with Hsp90, paving the way for TrkAIII recruitment to the centrosome. At the centrosome, TrkAIII differentially phosphorylates several centrosome-associated components, increases centrosome interaction with polo kinase 4, and decreases centrosome interaction with separase, the net results of which are centrosome amplification and increased genetic instability. The data characterize TrkAIII as a novel internal membrane-associated centrosome kinase, unveiling an important alternative mechanism to “classical” cell surface oncogenic receptor tk signaling through which stress-regulated alternative TrkAIII splicing influences the oncogenic process

    Multidisciplinary Treatment, Including Locoregional Chemotherapy, for Merkel-Polyomavirus-Positive Merkel Cell Carcinomas: Perspectives for Patients Exhibiting Oncogenic Alternative Δ exon 6–7 TrkAIII Splicing of Neurotrophin Receptor Tropomyosin-Related Kinase A

    No full text
    Merkel cell carcinomas (MCCs) are rare, aggressive, cutaneous neuroendocrine tumours, approximately 80% of which are caused by the genomic integration of Merkel cell polyomavirus (MCPyV). MCPyV-positive MCCs carry poor prognosis in approximately 70% of cases, highlighting the need for greater understanding of the oncogenic mechanisms involved in pathogenesis, progression and post-therapeutic relapse, and translation into novel therapeutic strategies. In a previous pilot study, we reported a potential relationship between MCPyV gene expression and oncogenic alternative Δ exon 6–7 TrkAIII splicing in formalin-fixed paraffin-embedded (FFPE) MCC tissues from a 12-patient cohort of >90% MCPyV-positive MCCs, diagnosed at San Salvatore Hospital, L’Aquila, Italy, characterising a new MCC subgroup and unveiling a novel potential MCPyV oncogenic mechanism and therapeutic target. This, however, could not be fully verified due to poor RNA quality and difficulty in protein extraction from FFPE tissues. Here, therefore, we extend our previous observations to confirm the relationship between MCPyV and oncogenic alternative Δ exon 6–7 TrkAIII splicing in fresh, nonfixed, MCPyV-positive MCC metastasis by detecting sequence-verified RT-PCR products, including full-length Δ exon 6–7 TrkAIII, and by Western blot detection of a 100 kDa TrkA protein isoform of identical size to 100 kDa Δ exon 6–7 TrkAIII expressed by stable transfected SH-SY5Y cells. We also report that in three MCC patients submitted for multidisciplinary treatment, including locoregional chemotherapy, MCPyV large T-antigen mRNA expression, Δ exon 6–7 TrkAIII mRNA expression and intracellular indirect immunofluorescence (IF) TrkA and phosphorylation protein isoform(s) immunoreactivity in FFPE tissues were not reduced in postchemotherapeutic-relapsed MCCs compared to pretherapeutic MCCs, extending the possible roles of this novel potential MCPyV oncogenic mechanism from MCC pathogenesis to post-therapeutic relapse and progression. Detection of alternative Δ exon 6–7 TrkAIII splicing in MCC, therefore, not only characterises a new MCPyV-positive MCC subgroup and unveils a novel potential MCPyV oncogenic mechanism but also identifies patients who may benefit from inhibitors of MCPyV T-antigen and/or TrkAIII expression or clinically approved Trk kinase inhibitors such as larotrectinib or entrectinib, which are known to inhibit activated TrkA oncogenes and to elicit durable responses in TrkA-fusion oncogene-driven cancers, supporting the call for a large-scale multicentre clinical study

    La conservazione ex situ della biodiversità delle specie vegetali spontanee e coltivate in Italia: stato dell’arte, criticità e azioni da compiere

    No full text
    corecore