34 research outputs found

    A Prospective Study of Intraarterial Infusion Chemotherapy in Advanced WT BRAF Melanoma Patients.

    Get PDF
    ABSTRACT Background Treatment strategies for advanced cutaneous melanoma (CM) patients, resistant or not treatable with novel target and immunotherapeutic drugs, remain a significant challenge, particularly for patients with unresectable stage IIIC/D disease localized to inferior limbs and pelvis, for whom specific outcomes are rarely considered. Materials and methods This is a prospective study of multidisciplinary treatments, including locoregional melphalan chemotherapy, in 62 BRAF wild-type CM patients with locoregional metastases in the inferior limbs and pelvis, including inguinal regions. Patients were either in progression following or ineligible for, or not treatable with novel immunotherapy. For exclusively inferior limb-localised disease, patients received locoregional melphalan chemotherapy performed by hyperthermic isolated limb perfusion (n = 19) or isolated limb infusion (n = 19), and for synchronous lesions localised to inferior limbs and pelvis, received hypoxic pelvic and limb perfusion (n = 24). Additional multidisciplinary therapy included local, locoregional and systemic treatments and the primary endpoint was tumour response. Results The objective response rate following first cycle of locoregional chemotherapy was 37.1% at 3 mo and median progression-free survival was 4-mo, with 12.9% procedure-related complications, 30.6% low-grade haematological toxicity and 11.3% severe limb toxic tissue reactions. Multivariate logistic regression showed that the odds of response were significantly higher for patients ≤ 75 y of age and for patients with locoregional metastases exclusively located in the inferior limbs. Conclusion In this subgroup of CM patients with BRAF wild-type status, locoregional metastases localized to inferior limbs and pelvis, in progression following or ineligible for immunotherapy, melphalan locoregional chemotherapy demonstrated a safe and effective profile. Trial Registration ClinicalTrials.gov Identifier NCT01920516; date of trial registration: August 6, 2013

    Heritability of the dimensions, compliance and distensibility of the human internal jugular vein wall

    Get PDF
    AIMS: The elasticity of the internal jugular vein (IJV) is a major determinant of cerebral venous drainage and right atrium venous return. However, the level of genetic determination of IJV dimensions, compliance and distensibility has not been studied yet. METHODS: 170 adult Caucasian twins (43 monozygotic [MZ] and 42 dizygotic [DZ] pairs) were involved from the Italian twin registry. Anteroposterior and mediolateral diameters of the IJV were measured bilaterally by ultrasonography. Measurements were made both in the sitting and supine positions, with or without Valsalva maneuver. Univariate quantitative genetic modeling was performed. RESULTS: Genetic factors are responsible for 30-70% of the measured properties of IJV at higher venous pressure even after adjustment for age and gender. The highest level of inheritance was found in the supine position regarding compliance (62%) and venous diameter during Valsalva (69%). Environmental and measurement-related factors instead are more important in the sitting position, when the venous pressure is low and the venous lumen is almost collapsed. The range of capacity changes between the lowest and highest intraluminal venous pressure (full distension range) are mainly determined by genetic factors (58%). CONCLUSIONS: Our study has shown substantial heritability of IJV biomechanics at higher venous pressures even after adjustment for age and gender. These findings yield an important insight to what degree the geometric and elastic properties of the vascular wall are formed by genetic and by environmental factors in humans

    Alternative TrkAIII splicing: A potential regulated tumor-promoting switch and therapeutic target in neuroblastoma

    No full text
    An association between elevated tyrosine kinase receptor (Trk)-A expression and better prognosis; the absence of mutation-activated TrkA oncogenes; the induction of apoptosis, growth arrest, morphological differentiation and inhibition of xenograft growth; and angiogenesis by TrkA gene transduction, provide the basis for the current concept of an exclusively tumor-suppressor role for TrkA in the aggressive pediatric tumor, neuroblastoma. This concept, however, has recently been challenged by the discovery of a novel hypoxia-regulated alternative TrkAIII splice variant, initial data for which suggest predominant expression in advanced-stage neuroblastoma. TrkAIII exhibits neuroblastoma xenograft tumor-promoting activity associated with the induction of a more angiogenic and stress-resistant neuroblastoma phenotype and antagonises nerve growth factor/TrkAI antioncogenic signaling. In this short review, the authors integrate this novel information into a modified concept that places alternative TrkA splicing as a potential pivotal regulator of neuroblastoma behavior and identifies the TrkAIII alternative splice variant as a potential biomarker of patient prognosis and novel therapeutic target. © 2005 Future Medicine Ltd

    Thioredoxin inhibits microvascular endothelial capillary tubule formation

    No full text
    Thioredoxin (Trx) inhibited human HMEC-1 dermal microvascular endothelial cell capillary tubule forming capacity in a Matrigel based assay in vitro. Inhibition of capillary tubule formation was Trx catalytic site and thioredoxin reductase (TrxR) dependent, mediated at the Matrigel matrix level, and associated with a shift from morphological differentiation to continuous proliferation, with enhanced cell spreading resulting in eventual monolayer formation. Soluble complex carbohydrates, which inhibited capillary tubule formation on Matrigel without induction of cell spreading or monolayer formation, failed to impair Trx promotion of cell spreading and mono-layer formation, suggesting a shift away front carbohydrate-mediated cell/matrix adhesive interactions. Laminin peptides YIGRS and SIKVAV, which impaired tubule formation on Matrigel without inducing cell spreading or monolayer formation, partially impaired cell spreading upon Trx-treated Matrigel without restoring tubule formation, consistent with a potential role for laminin in Trx-mediated effects. Trx reduced laminin and destabilised laminin/galectin-3 complexes within Matrigel. Native purified EHS Laminin (also containing galectin-3), but not recombinant galectin-3, restored HMEC-1 capillary tubule formation on Trx-treated Matrigel. These data highlight a novel deregulatory effect of extracellular Trx upon morphological capillary differentiation that appears to depend upon the reduction of laminin and destabilisation of its interaction with galectin-3, possibly leading to galectin-3 neutralisation that shifts cell/matrix adhesive interactions away from being carbohydrate mediated and results in loss of proliferation-inhibiting and differentiation promoting cues from this tumor basement membrane matrix. (C) 2003 Elsevier Inc. All rights reserved

    TrkAIII Promotes Microtubule Nucleation and Assembly at the Centrosome in SH-SY5Y Neuroblastoma Cells, Contributing to an Undifferentiated Anaplastic Phenotype

    Get PDF
    The alternative TrkAIII splice variant is expressed by advanced stage human neuroblastomas (NBs) and exhibits oncogenic activity in NB models. In the present study, employing stable transfected cell lines and assays of indirect immunofluorescence, immunoprecipitation, Western blotting, microtubule regrowth, tubulin kinase, and tubulin polymerisation, we report that TrkAIII binds α-tubulin and promotes MT nucleation and assembly at the centrosome. This effect depends upon spontaneous TrkAIII activity, TrkAIII localisation to the centrosome and pericentrosomal area, and the capacity of TrkAIII to bind, phosphorylate, and polymerise tubulin. We propose that this novel role for TrkAIII contributes to MT involvement in the promotion and maintenance of an undifferentiated anaplastic NB cell morphology by restricting and augmenting MT nucleation and assembly at the centrosomal MTOC

    The TrkAIII Oncoprotein Inhibits Mitochondrial Free Radical ROS-Induced Death of SH-SY5Y Neuroblastoma Cells by Augmenting SOD2 Expression and Activity at the Mitochondria, within the Context of a Tumour Stem Cell-like Phenotype

    No full text
    The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB

    The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype.

    No full text
    The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB
    corecore