15 research outputs found

    Best practices in plant cytometry

    Get PDF
    Editorialinfo:eu-repo/semantics/publishedVersio

    IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth

    Get PDF
    Cytokinin and auxin are plant hormones that coordinate many aspects of plant development. Their interactions in plant underground growth are well established, occurring at the levels of metabolism, signaling, and transport. Unlike many plant hormone classes, cytokinins are represented by more than one active molecule. Multiple mutant lines, blocking specific parts of cytokinin biosynthetic pathways, have enabled research in plants with deficiencies in specific cytokinin-types. While most of these mutants have confirmed the impeding effect of cytokinin on root growth, the ipt29 double mutant instead surprisingly exhibits reduced primary root length compared to the wild type. This mutant is impaired in cis-zeatin (cZ) production, a cytokinin-type that had been considered inactive in the past. Here we have further investigated the intriguing ipt29 root phenotype, opposite to known cytokinin functions, and the (bio)activity of cZ. Our data suggest that despite the ipt29 short-root phenotype, cZ application has a negative impact on primary root growth and can activate a cytokinin response in the stele. Grafting experiments revealed that the root phenotype of ipt29 depends mainly on local signaling which does not relate directly to cytokinin levels. Notably, ipt29 displayed increased auxin levels in the root tissue. Moreover, analyses of the differential contributions of ipt2 and ipt9 to the ipt29 short-root phenotype demonstrated that, despite its deficiency on cZ levels, ipt2 does not show any root phenotype or auxin homeostasis variation, while ipt9 mutants were indistinguishable from ipt29. We conclude that IPT9 functions may go beyond cZ biosynthesis, directly or indirectly, implicating effects on auxin homeostasis and therefore influencing plant growth

    Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root

    Get PDF
    Reaction wood (RW) formation is an innate physiological response of woody plants to counteract mechanical constraints in nature, reinforce structure and redirect growth toward the vertical direction. Differences and/or similarities between stem and root response to mechanical constraints remain almost unknown especially in relation to phytohormones distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static non-destructive mid-term bending treatment were analyzed. The distribution of tension and compression forces was firstly modeled along the main bent stem and root axis; then, anatomical features, chemical composition, and a complete auxin and cytokinin metabolite profiles of the stretched convex and compressed concave side of three different bent stem and root sectors were analyzed. The results showed that in bent stems RW was produced on the upper stretched convex side whereas in bent roots it was produced on the lower compressed concave side. Anatomical features and chemical analysis showed that bent stem RW was characterized by a low number of vessel, poor lignification, and high carbohydrate, and thus gelatinous layer in fiber cell wall. Conversely, in bent root, RW was characterized by high vessel number and area, without any significant variation in carbohydrate and lignin content. An antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem and root to facilitate upward/downward organ bending. The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent

    Alterations in hormonal signals spatially coordinate distinct responses to DNA double-strand breaks in Arabidopsis roots

    No full text
    Plants have a high ability to cope with changing environments and grow continuously throughout life. However, the mechanisms by which plants strike a balance between stress response and organ growth remain elusive. Here, we found that DNA double-strand breaks enhance the accumulation of cytokinin hormones through the DNA damage signaling pathway in the Arabidopsis root tip. Our data showed that activation of cytokinin signaling suppresses the expression of some of the PIN-FORMED genes that encode efflux carriers of another hormone, auxin, thereby decreasing the auxin signals in the root tip and causing cell cycle arrest at G2 phase and stem cell death. Elevated cytokinin signaling also promotes an early transition from cell division to endoreplication in the basal part of the root apex. We propose that plant hormones spatially coordinate differential DNA damage responses, thereby maintaining genome integrity and minimizing cell death to ensure continuous root growth

    Conditional auxin response and differential cytokinin profiles in shoot branching mutants

    No full text
    Strigolactone (SL), auxin, and cytokinin (CK) are hormones that interact to regulate shoot branching. For example, several ramosus (rms) branching mutants in pea (Pisum sativum) have SL defects, perturbed xylem CK levels, and diminished responses to auxin in shoot decapitation assays. In contrast with the last of these characteristics, we discovered that buds on isolated nodes (explants) of rms plants instead respond normally to auxin. We hypothesized that the presence or absence of attached roots would result in transcriptional and hormonal differences in buds and subtending stem tissues, and might underlie the differential auxin response. However, decapitated plants and explants both showed similar up-regulation of CK biosynthesis genes, increased CK levels, and down-regulation of auxin transport genes. Moreover, auxin application counteracted these trends, regardless of the effectiveness of auxin at inhibiting bud growth. Multivariate analysis revealed that stem transcript and CK changes were largely associated with decapitation and/or root removal and auxin response, whereas bud transcript profiles related more to SL defects. CK clustering profiles were indicative of additional zeatin-type CKs in decapitated stems being supplied by roots and thus promoting bud growth in SL-deficient genotypes even in the presence of added auxin. This difference in CK content may explain why rms buds on explants respond better to auxin than those on decapitated plants. We further conclude that rapid changes in CK status in stems are auxin dependent but largely SL independent, suggesting a model in which auxin and CK are dominant regulators of decapitation-induced branching, whereas SLs are more important in intact plants
    corecore