2 research outputs found
ISWI ATP-dependent remodeling of nucleoplasmic ω-speckles in the brain of Drosophila melanogaster
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to the RNA-binding proteins family. They are involved in processing heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs. These proteins participate in every step of mRNA cycle, such as mRNA export, localization, translation, stability and alternative splicing. At least 14 major hnRNPs, which have structural and functional homologues in mammals, are expressed in Drosophila melanogaster. Until now, six of these hnRNPs are known to be nucleus-localized and associated with the long non-coding RNA (lncRNA) heat shock responsive ω (hsrω) in the omega speckle compartments (ω-speckles). The chromatin remodeler ISWI is the catalytic subunit of several ATP-dependent chromatin-remodeling complexes, and it is an essential factor for organization of ω-speckles. Indeed, in ISWI null mutant, severe defects in ω-speckles structure are detectable. Here, we clarify the role of ISWI in the hnRNPs‒hsrω interaction. Moreover, we describe how ISWI by its remodeling activity, controls hsrω and hnRNPs engagement in ω-speckles. Finally, we demonstrate that the sequestration of hnRNPs in ω-speckles nuclear compartment is a fundamental event in gene expression control and represents a key step in the regulation of several pathways
Loss of ISWI Function in Drosophila Nuclear Bodies Drives Cytoplasmic Redistribution of Drosophila TDP-43
Over the past decade, evidence has identified a link between protein aggregation, RNA biology, and a subset of degenerative diseases. An important feature of these disorders is the cytoplasmic or nuclear aggregation of RNA-binding proteins (RBPs). Redistribution of RBPs, such as the human TAR DNA-binding 43 protein (TDP-43) from the nucleus to cytoplasmic inclusions is a pathological feature of several diseases. Indeed, sporadic and familial forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration share as hallmarks ubiquitin-positive inclusions. Recently, the wide spectrum of neurodegenerative diseases characterized by RBPs functions’ alteration and loss was collectively named proteinopathies. Here, we show that TBPH (TAR DNA-binding protein-43 homolog), the Drosophila ortholog of human TDP-43 TAR DNA-binding protein-43, interacts with the arcRNA hsrω and with hsrω-associated hnRNPs. Additionally, we found that the loss of the omega speckles remodeler ISWI (Imitation SWI) changes the TBPH sub-cellular localization to drive a TBPH cytoplasmic accumulation. Our results, hence, identify TBPH as a new component of omega speckles and highlight a role of chromatin remodelers in hnRNPs nuclear compartmentalization