33 research outputs found

    The endocannabinoid transport inhibitor AM404 differentially modulates recognition memory in rats depending on environmental aversiveness

    Get PDF
    Cannabinoid compounds may influence both emotional and cognitive processes depending on the level of environmental aversiveness at the time of drug administration. However, the mechanisms responsible for these responses remain to be elucidated. The present experiments investigated the effects induced by the endocannabinoid transport inhibitor AM404 (0.5–5 mg/kg, i.p.) on both emotional and cognitive performances of rats tested in a Spatial Open Field task and subjected to different experimental settings, named High Arousal (HA) and Low Arousal (LA) conditions. The two different experimental conditions influenced emotional reactivity independently of drug administration. Indeed, vehicle-treated rats exposed to the LA condition spent more time in the center of the arena than vehicle-treated rats exposed to the HA context. Conversely, the different arousal conditions did not affect the cognitive performances of vehicle-treated animals such as the capability to discriminate a spatial displacement of the objects or an object substitution. AM404 administration did not alter locomotor activity or emotional behavior of animals exposed to both environmental conditions. Interestingly, AM404 administration influenced the cognitive parameters depending on the level of emotional arousal: it impaired the capability of rats exposed to the HA condition to recognize a novel object while it did not induce any impairing effect in rats exposed to the LA condition. These findings suggest that drugs enhancing endocannabinoid signaling induce different effects on recognition memory performance depending on the level of emotional arousal induced by the environmental conditions

    Detrimental effects of the 'bath salt' methylenedioxypyrovalerone on social play behavior in male rats

    Get PDF
    Methylenedioxypyrovalerone (MDPV) is the most popular synthetic cathinone found in products marketed as 'bath salts', widely abused among teenagers and young adults. Synthetic cathinones have pharmacological effects resembling those of psychostimulants, which are known to disrupt a variety of social behaviors. However, despite the popular use of MDPV by young people in social contexts, information about its effects on social behavior is scarce. To investigate the impact of MDPV on social behavior at young age, and the underlying neurobehavioral mechanisms, we focused on social play behavior. Social play behavior is the most characteristic social behavior displayed by young mammals and it is crucial for neurobehavioral development. Treatment with MDPV reduced social play behavior in both juvenile and young adult male rats, and its play-suppressant effect was subject to tolerance but not sensitization. As the behavioral effects of MDPV have been ascribed to dopaminergic and noradrenergic neurotransmission, and given the role of these neurotransmitters in social play, we investigated the involvement of dopamine and noradrenaline in the play-suppressant effects of MDPV. The effects of MDPV on social play were blocked by either the α2 adrenoceptor antagonist RX821002 or the dopamine receptor antagonist flupenthixol, given alone or together at sub-effective doses. In sum, MDPV selectively suppresses the most vigorous social behavior of developing rats through both noradrenergic and dopaminergic mechanisms. This study provides important preclinical evidence of the deleterious effects of MDPV on social behavior, and as such increases our understanding of the neurobehavioral effects of this popular cathinone

    Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood

    Get PDF
    Heavy cannabis consumption among adolescents is associated with significant and lasting neurobiological, psychological and health consequences that depend on the age of first use. Chronic exposure to cannabinoid agonists during the perinatal period or adolescence alters social behavior and prefrontal cortex (PFC) activity in adult rats. However, sex differences on social behavior as well as PFC synaptic plasticity after acute cannabinoid activation remain poorly explored. Here, we determined that the consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 differently affected PFC neuronal and synaptic functions after 24 h in male and female rats during the pubertal and adulthood periods. During puberty, single cannabinoid exposure (SCE) reduced play behavior in females but not males. In contrast, the same treatment impaired sociability in both sexes at adulthood. General exploration and memory recognition remained normal at both ages and both sexes. At the synaptic level, SCE ablated endocannabinoid-mediated synaptic plasticity in the PFC of females of both ages and heightened excitability of PFC pyramidal neurons at adulthood, while males were spared. In contrast, cannabinoid exposure was associated with impaired long-term potentiation (LTP) specifically in adult males. Together, these data indicate behavioral and synaptic sex differences in response to a single in vivo exposure to cannabinoid at puberty and adulthood

    Desenvolvimento vegetativo de cultivares de palma de óleo dos 14 aos 34 meses de idade em ecossistemas de Roraima.

    Get PDF
    Objetivou-se com este trabalho avaliar o desenvolvimento vegetativo de cultivares de palma de óleo Elaeis guineensis Jacq dos 14 aos 34 meses de idade no campo, em dois ecossistemas de Roraima. Foram conduzidos dois experimentos, sendo um em área de savana e outro em área de floresta alterada com a avaliação das cultivares BRS C-2528, BRS C-3701 e BRS C-2301, em deline amento experimental de blocos ao acaso com seis repetições. Foram realizadas 18 avaliações mensais, no período de agosto de 2008 a abril de 2010, quanto ao número de folhas emitidas, comprimento da folha 4 (cm) e circunferência do coleto (cm). Foram realizadas análises de variância individuais e conjuntas. Para a comparação das médias das características avaliadas foi utilizado o teste de Scott-Knott em nível de 5% de probabilidade. Pela comparação das médias das características avaliadas, nos dois ambientes, foi possível verificar que, aos 34 meses de idade, no ecossistema de floresta as plantas apresentaram maior número de folhas, maior comprimento da folha 4 e maior circunferência do coleto, diferindo significativamente, dos resultados obtidos em ecossistema de savana. Na área de floresta alterada, independente da cultivar avaliada, as plantas apresentaram mensalmente, 3,0 folhas emitidas, crescimento da folha 4 de 8,9 cm e circunferência do coleto de 9,6 cm, enquanto que, em savana, 2,5 folhas emitidas, comprimento da folha 4 de 7,5 cm e circunferência do coleto de 6,1cm. Conclui-se que no ambiente de floresta alterada, as cultivares apresentam desenvolvimento vegetativo superior ao obtido no ambiente de savana

    Cannabinoid modulation of mother-infant interaction: is it just about milk?

    No full text
    Mother-infant interactions are essential for proper neurobehavioral development of the offspring, and disruptions in those relationships may result in neuroendocrine, neurochemical and behavioral alterations at adulthood. The neural circuitries involved in mother-infant interactions have not been completely elucidated yet. The brain endocannabinoid system plays an essential role in prenatal and postnatal neurobehavioral development. Here, we will summarize and discuss the available findings about the role of endocannabinoids in three key aspects of mother-infant interactions in rodents: suckling, maternal behavior and separation-induced ultrasonic vocalizations (USVs). The studies reviewed here show that endocannabinoids are not only involved in suckling initiation and, therefore, in the feeding and growth of the offspring, but also regulate the emotional reactivity of rodent pups, as measured by the rate of isolation-induced USVs. Conversely, less information is available about endocannabinoid modulation of maternal behavior, and therefore more research in this direction is warranted. Indeed, since Cannabis sativa preparations are widely used by young people, including pregnant and lactating women, it is important to understand whether developmental exposure to cannabinoids interferes with mother-infant bond formation, potentially leading to neurodevelopmental alterations and increased vulnerability to psychopathology later in life

    Maternal Immune Activation Induced by Prenatal Lipopolysaccharide Exposure Leads to Long-Lasting Autistic-like Social, Cognitive and Immune Alterations in Male Wistar Rats

    No full text
    Several studies have supported the association between maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation and an increased susceptibility to the development of various psychiatric and neurological disorders, including autism and other neurodevelopmental disorders (NDDs), in the offspring. In the present work, we aimed to provide extensive characterization of the short- and long-term consequences of MIA in the offspring, both at the behavioral and immunological level. To this end, we exposed Wistar rat dams to Lipopolysaccharide and tested the infant, adolescent and adult offspring across several behavioral domains relevant to human psychopathological traits. Furthermore, we also measured plasmatic inflammatory markers both at adolescence and adulthood. Our results support the hypothesis of a deleterious impact of MIA on the neurobehavioral development of the offspring: we found deficits in the communicative, social and cognitive domains, together with stereotypic-like behaviors and an altered inflammatory profile at the systemic level. Although the precise mechanisms underlying the role of neuroinflammatory states in neurodevelopment need to be clarified, this study contributes to a better understanding of the impact of MIA on the risk of developing behavioral deficits and psychiatric illness in the offspring

    Unidirectional opioid-cannabinoid cross-tolerance in the modulation of social play behavior in rats

    No full text
    Rationale The endocannabinoid and the endogenous opioid systems interact in the modulation of social play behavior, a highly rewarding social activity abundantly expressed in young mammals. Prolonged exposure to opioid or cannabinoid receptor agonists induces cross-tolerance or cross-sensitization to their acute behavioral effects. Objectives and methods Behavioral and biochemical experiments were performed to investigate whether cross-tolerance or cross-sensitization occurs to the play-enhancing effects of cannabinoid and opioid drugs on social play behavior, and the possible brain substrate involved. Results The play-enhancing effects induced by systemic administration of JZL184, which inhibits the hydrolysis of the endocannabinoid 2-AG, were suppressed in animals repeatedly pretreated with the opioid receptor agonist morphine. Conversely, acute morphine administration increased social play in rats pretreated with vehicle or with either JZL184 or the cannabinoid agonist WIN55,212-2. Acute administration of JZL184 increased the activation of both CB1 receptors and their effector Akt in the nucleus accumbens and prefrontal cortex, brain regions important for the expression of social play. These effects were absent in animals pretreated with morphine. Furthermore, only animals repeatedly treated with morphine and acutely administered with JZL184 showed reduced activation of CB1 receptors and Akt in the amygdala. Conclusions The present study demonstrates a dynamic opioid–cannabinoid interaction in the modulation of social play behavior, occurring in limbic brain areas strongly implicated in social play behavior. A better understanding of opioid–cannabinoid interactions in social play contributes to clarify neurobiological aspects of social behavior at young age, which may provide new therapeutic targets for social dysfunctions

    Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood

    No full text
    International audienceHeavy cannabis consumption among adolescents is associated with significant and lasting neurobiological, psychological and health consequences that depend on the age of first use. Chronic exposure to cannabinoid agonists during the perinatal period or adolescence alters social behavior and prefrontal cortex (PFC) activity in adult rats. However, sex differences on social behavior as well as PFC synaptic plasticity after acute cannabinoid activation remain poorly explored. Here, we determined that the consequences of a single in vivo exposure to the synthetic cannabimimetic WIN55,212-2 differently affected PFC neuronal and synaptic functions after 24 h in male and female rats during the pubertal and adulthood periods. During puberty, single cannabinoid exposure (SCE) reduced play behavior in females but not males. In contrast, the same treatment impaired sociability in both sexes at adulthood. General exploration and memory recognition remained normal at both ages and both sexes. At the synaptic level, SCE ablated endocannabinoid-mediated synaptic plasticity in the PFC of females of both ages and heightened excitability of PFC pyramidal neurons at adulthood, while males were spared. In contrast, cannabinoid exposure was associated with impaired long-term potentiation (LTP) specifically in adult males. Together, these data indicate behavioral and synaptic sex differences in response to a single in vivo exposure to cannabinoid at puberty and adulthood

    Amplification of mGlu5-Endocannabinoid Signaling Rescues Behavioral and Synaptic Deficits in a Mouse Model of Adolescent and Adult Dietary Polyunsaturated Fatty Acid Imbalance

    No full text
    Energy-dense, yet nutritionally poor food is a high-risk factor for mental health disorders. This is of particular concern during adolescence, a period often associated with increased consumption of low nutritional content food and higher prevalence of mental health disorders. Indeed, there is an urgent need to understand the mechanisms linking unhealthy diet and mental disorders. Deficiency in n-3 polyunsaturated fatty acids (PUFAs) is a hallmark of poor nutrition and mood disorders. Here, we developed a mouse model of n-3 PUFA deficiency lasting from adolescence into adulthood. Starting nutritional deficits in dietary n-3 PUFAs during adolescence decreased n-3 PUFAs in both medial prefrontal cortex (mPFC) and nucleus accumbens, increased anxiety-like behavior, and decreased cognitive function in adulthood. Importantly, we discovered that endocannabinoid/mGlu5-mediated LTD in the mPFC and accumbens was abolished in adult n-3-deficient mice. Additionally, mPFC NMDAR-dependent LTP was also lacking in the n-3-deficient group. Pharmacological enhancement of the mGlu5/eCB signaling complex, by positive allosteric modulation of mGlu5 or inhibition of endocannabinoid 2-arachidonylglycerol degradation, fully restored synaptic plasticity and normalized emotional and cognitive behaviors in malnourished adult mice. Our data support a model where nutrition is a key environmental factor influencing the working synaptic range into adulthood, long after the end of the perinatal period. These findings have important implications for the identification of nutritional risk factors for disease and design of new treatments for the behavioral deficits associated with nutritional n-3 PUFA deficiency.SIGNIFICANCE STATEMENT In a mouse model mimicking n-3 PUFA dietary deficiency during adolescence and adulthood, we found strong increases in anxiety and anhedonia which lead to decreases in specific cognitive functions in adulthood. We found that endocannabinoid/mGlu5-mediated LTD and NMDAR-dependent LTP were lacking in adult n-3-deficient mice. Acute positive allosteric modulation of mGlu5 or inhibition of endocannabinoid degradation normalized behaviors and synaptic functions in n-3 PUFA-deficient adult mice. These findings have important implications for the identification of nutritional risk for disease and the design of new treatments for the behavioral deficits associated with nutritional n-3 PUFAs' imbalance.Dépression et Nutritio

    Sex-specific maturational trajectory of endocannabinoid plasticity in the rat prefrontal cortex

    No full text
    The prefrontal cortex (PFC) develops until early adulthood in rodents and humans, but how synaptic plasticity evolves throughout postnatal development is not known. Here, we used a cross-sectional approach to establish the postnatal maturational trajectories of intrinsic properties and synaptic plasticity in the PFC of rats of both sexes. We found that while layer 5 PFC pyramidal neurons from rats of both sexes displayed similar current-voltage relationships, rheobases and resting potentials across all age groups, excitability was lower in female adults compared to the other developmental stages. NMDAR-dependent long-term potentiation and mGluR2/3-mediated long-term depression (LTD) were equally expressed at the juvenile, pubescent and adult developmental stages in animals of both sexes. However, the developmental course of endocannabinoid (eCB)-mediated LTD was sexually dimorphic. First, eCB-LTD emerged during the juvenile period in females. However, although CB1Rs were functional in both sexes at all developmental stages, eCB-LTD’s first emerged during pubescence in male. Second, eCB-LTD engaged distinct receptors in males and females depending on their developmental stages. Female rats employ both CB1R and TRPV1R to produce eCB-LTD at the juvenile stage but solely CB1R at pubescence followed by only TRPV1R at adulthood. In contrast, in pubescent and adult males eCB-LTD always and exclusively depended on CB1R. Pharmacological blockade of 2AG’s principal degrading enzyme allowed incompetent male juvenile synapses to express eCB-LTD. The data reveal different maturational trajectories in the PFC of male and female rats and provide new cellular substrates to the sex-specific behavioral and synaptic abnormalities caused by adolescent exposure to cannabinoids
    corecore