20 research outputs found

    Experimental and numerical assessment of weld pool behavior and final microstructure in wire feed laser beam welding with electromagnetic stirring

    Get PDF
    Advantages such as element homogenization and grain refinement can be realized by introducing electromagnetic stirring into laser beam welding. However, the involved weld pool behavior and its direct role on determining the final microstructure have not been revealed quantitatively. In this paper, a 3D transient heat transfer and fluid flow model coupled with element transport and magnetic induction is developed for wire feed laser beam welding with electromagnetic stirring. The magnetohydrodynamics, temperature profile, velocity field, keyhole evolution and element distribution are calculated and analyzed. The model is well tested against the experimental results. It is suggested that a significant electromagnetic stirring can be produced in the weld pool by the induced Lorentz force under suitable electromagnetic parameters, and it shows important influences on the thermal fluid flow and the solidification parameter. The forward and downward flow along the longitudinal plane of the weld pool is enhanced, which can bring the additional filler wire material to the root of the weld pool. The integrated thermal and mechanical impacts of electromagnetic stirring on grain refinement which is confirmed experimentally by electron backscatter diffraction analysis are decoupled using the calculated solidification parameters and a criterion of dendrite fragmentation.DFG, 416014189, Simulation des Einflusses der elektromagnetisch unterstützten Durchmischung beim Laserstrahlschweißen dickwandiger Stahlbauteile mit Zusatzmateria

    Numerical and experimental investigation of thermo-fluid flow and element transport in electromagnetic stirring enhanced wire feed laser beam welding

    Get PDF
    The introduction of electromagnetic stirring to laser beam welding can bring several beneficial effects e.g. element homogenization and grain refinement. However, the underlying physics has not been fully explored due to the absence of quantitative data of heat and mass transfer in the molten pool. In this paper, the influence of electromagnetic stirring on the thermo-fluid flow and element transport in the wire feed laser beam welding is studied numerically and experimentally. A three-dimensional transient heat transfer and fluid flow model coupled with dynamic keyhole, magnetic induction and element transport is developed for the first time. The results suggest that the Lorentz force produced by an oscillating magnetic field and its induced eddy current shows an important influence on the thermo-fluid flow and the keyhole stability. The melt flow velocity is increased by the electromagnetic stirring at the rear and lower regions of molten pool. The keyhole collapses more frequently at the upper part. The additional elements from the filler wire are significantly homogenized because of the enhanced forward and downward flow. The model is well verified by fusion line shape, high-speed images of molten pool and measured element distribution. This work provides a deeper understanding of the transport phenomena in the laser beam welding with magnetic field.DFG, 416014189, Simulation des Einflusses der elektromagnetisch unterstützten Durchmischung beim Laserstrahlschweißen dickwandiger Stahlbauteile mit Zusatzmateria

    Assessment of thermal cycles by combining thermo-fluid dynamics and heat conduction in keyhole mode welding processes

    Get PDF
    A numerical framework for simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by a proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperature-dependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm s-1 and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The numerical and experimental molten pools, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement.DFG, 411393804, Experimentelle und numerische Untersuchung der Entstehungsmechanismen des Bulgings und dessen Einfluss auf die Bildung von Mittelrippendefekten beim Hochleistungslaserstrahlschweißen niedriglegierter Stähle hoher Blechdick

    On the search for the origin of the bulge effect in high power laser beam welding

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Laser Applications 31, 022413 (2019) and may be found at https://doi.org/10.2351/1.5096133.The shape of the weld pool in laser beam welding plays a major role in understanding the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section, a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging cameras, a mid-wavelength infrared camera and a newly developed infrared camera working in the spectral range of 500 to 540 nm, making it perfectly suited for temperature measurements of molten materials. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop-shaped weld pool. A bulge region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermocapillary convection, natural convection, and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulge region. A good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface was found

    Study on the transition behavior of the bulging effect during deep penetration laser beam welding

    Get PDF
    The present work is devoted to the study of the transition behavior of the recently confirmed widening of the weld pool, known as the bulging effect, during high-power deep penetration laser beam welding of thick unalloyed steel sheets. A three-dimensional transient multi-physics numerical model is developed, allowing for the prediction of the bulge formation and the study of its temporal behavior. The model is generalized to account automatically for the transition from partial to complete penetration. Several experimental measurements and observations, such as drilling period, weld pool length, temperature, efficiency, and metallographic cross-sections are used to verify the model and assure the plausibility of the numerical results. The analysis of the calculated temperature and velocity distributions, as well as the evolution of the keyhole geometry, shows that the formation of a bulging region strongly depends on the penetration depth of the weld. Based on the numerical results, the bulge is found to occur transiently, having its transition from a slight bulge to a fully developed bulging between penetration depths of 6 mm and 9 mm, respectively.DFG, 411393804, Experimentelle und numerische Untersuchung der Entstehungsmechanismen des Bulgings und dessen Einfluss auf die Bildung von Mittelrippendefekten beim Hochleistungslaserstrahlschweißen niedriglegierter Stähle hoher BlechdickeDFG, 416014189, Simulation des Einflusses der elektromagnetisch unterstützten Durchmischung beim Laserstrahlschweißen dickwandiger Stahlbauteile mit Zusatzmateria

    The bulging effect and its relevance in high power laser beam welding

    Get PDF
    The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and an infrared camera is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs more frequently during partial penetration above 6 mm and complete penetration above 8 mm penetration depth, respectively. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root.DFG, 411393804, Experimentelle und numerische Untersuchung der Entstehungsmechanismen des Bulgings und dessen Einfluss auf die Bildung von Mittelrippendefekten beim Hochleistungslaserstrahlschweißen niedriglegierter Stähle hoher BlechdickeDFG, 416014189, Simulation des Einflusses der elektromagnetisch unterstützten Durchmischung beim Laserstrahlschweißen dickwandiger Stahlbauteile mit Zusatzmateria

    Numerical Analysis of the Partial Penetration High Power Laser Beam Welding of Thick Sheets at High Process Speeds

    No full text
    The present work is devoted to the numerical analysis of the high-power laser beam welding of thick sheets at different welding speeds. A three-dimensional transient multi-physics numerical model is developed, allowing for the prediction of the keyhole geometry and the final penetration depth. Two ray tracing algorithms are implemented and compared, namely a standard ray tracing approach and an approach using a virtual mesh refinement for a more accurate calculation of the reflection point. Both algorithms are found to provide sufficient accuracy for the prediction of the keyhole depth during laser beam welding with process speeds of up to 1.5mmin−1. However, with the standard algorithm, the penetration depth is underestimated by the model for a process speed of 2.5mmin−1 due to a trapping effect of the laser energy in the top region. In contrast, the virtually refined ray tracing approach results in high accuracy results for process speeds of both 1.5mmin−1 and 2.5mmin−1. A detailed study on the trapping effect is provided, accompanied by a benchmark including a predefined keyhole geometry with typical characteristics for the high-power laser beam welding of thick plates at high process speed, such as deep keyhole, inclined front keyhole wall, and a hump

    Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding

    No full text
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in X. Meng et al., Journal of Laser Applications 32, 022026 (2020) and may be found at https://doi.org/10.2351/7.0000069.The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly nonlinear and multicoupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modeling. A 3D transient multiphysical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics, and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph, and the element distribution from the energy dispersive x-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters.DFG, 416014189, Simulation des Einflusses der elektromagnetisch unterstützten Durchmischung beim Laserstrahlschweißen dickwandiger Stahlbauteile mit Zusatzmateria

    Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool

    No full text
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in A. Artinov et al., Journal of Laser Applications 32, 022024 (2020) and may be found at https://doi.org/10.2351/7.0000068.The geometrical characteristics of the weld end crater are commonly used as a means of validating numerical results in welding simulations. In this paper, an analytical model is developed for calculating the cooling stage of the welding process after the moving energy source is turned off. Solutions for various combinations of heat sources and heated bodies are found. It is shown that after turning off the energy source, additional melting of the base material in the longitudinal direction may occur due to the overheated liquid metal. The developed technique is applied to complete-penetration keyhole laser beam welding of 2 mm thick austenitic stainless-steel plate 316L at a welding speed of 20 mm s−1 and a laser power of 2.3 kW. The results show a theoretical increase in the weld end crater length of up to 19% compared to the length of the steady-state weld pool. It is found that at the moment of switch off, the weld end crater center, where solidification of the liquid metal ends, is shifted from the heat source axis toward the weld pool tail. The solidification rate and the direction of crystallization of the molten material during the welding process and those in the weld end crater differ significantly. A good agreement between the computational results and the welding experiments is achieved

    The influence of magnetic field orientation on metal mixing in electromagnetic stirring enhanced wire feed laser beam welding

    No full text
    The application of the electromagnetic stirring from an oscillating magnetic field can improve the metal mixing in wire feed laser beam welding. However, the extra parameters introduced in this technique make the selection of an optimal combination of process parameters more difficult. In the current study, besides the commonly concerned magnetic flux density and frequency, the influence of the magnetic field orientation (magnetic field angle) on the transport of filler metal is studied numerically and experimentally. Ex-situ X-ray fluorescence spectrometer measurements are used to map the metal mixing in the final weld. A three-dimensional transient multi-physical model is developed to reveal the deeper physical essence, considering the coupling between heat transfer, fluid flow, keyhole dynamics, element transport and magnetohydrodynamics. The spatial distribution of the laser energy on the keyhole wall is calculated by a ray tracing algorithm. The results show that the magnetic field with smaller angle with respect to the transverse direction provides better penetration capacity, and its stirring effect can reach the lower part of the molten pool. Therefore, the smaller magnetic field angle produces better metal mixing. A constant downward flow is formed at the lower part of the molten pool when magnetic field of 10° angle is applied, which brings the filler metal to the root region. As the magnetic field angle increases to 40°, the beneficial downward flow changes into a constant upward flow, resulting in a concentration of the filler metal in the upper region. This study provides further insight of the underlying physics in the electromagnetically enhanced laser beam welding, which may guide the optimization of parameters to achieve property homogeneity or to avoid potential defects.DFG, 416014189, Simulation des Einflusses der elektromagnetisch unterstützten Durchmischung beim Laserstrahlschweißen dickwandiger Stahlbauteile mit Zusatzmateria
    corecore