16 research outputs found

    Repurposing of psychotropic drugs for cancer therapy

    Get PDF
    Despite improvements in cancer therapy, overall survival for most cancer types has changed a little in the past decades. Drug repositioning represents a promising approach for discovering new therapeutic strategies for cancer therapy. Since several epidemiological studies reported lower cancer incidence in individuals receiving long term psychotropic drugs treatment, in this project we investigated 27 psychotropic drugs for their cytotoxic activity in several cancer cell lines. Consistent with the cationic amphiphilic structure of the most cytotoxic compounds, we investigated their effect on mitochondrial and lysosomal compartments. Penfluridol, ebastine, pimozide, fluoxetine, fluspirilene and nefazodone showed significant cytotoxicity, in the low micromolar range, in all cell lines tested. In MCF7 cells these drugs triggered mitochondrial membrane depolarization, increased the acidic vesicular compartments and induced phospholipidosis. Neither caspase nor autophagy inhibitors rescued cells from death induced by fluoxetine, fluspirilene and nefazodone. Treatment with 3-methyladenine rescued cell death induced by pimozide and spiperone. Conversely, inhibition of lysosomal cathepsins significantly reduced cell death induced by ebastin, penfluridol, pimozide, spiperone and mildly by fluoxetine. Lastly, spiperone caused apoptosis in colorectal and breast. Our unpublished data on the characterization of spiperone activity on adherent and stem-like colorectal cancer cells demonstrated that its cytotoxicity is linked to perturbations of intracellular calcium (Ca2+) homeostasis, which likely result in mitochondrial Ca2+ overload and membrane depolarization, cell cycle block in G1 phase, and apoptosis. Spiperone induced a PLC dependent Ca2+ release from the endoplasmic reticulum (ER) along with ER stress and unfolded protein response activation, resulting in CHOP upregulation. Altogether these data support the clinical development of psychotropic drugs for cancer therapy

    Wiskott-Aldrich syndrome protein interacts and inhibits diacylglycerol kinase alpha promoting IL-2 induction

    Get PDF
    Background: Phosphorylation of diacylglycerol by diacylglycerol-kinases represents a major inhibitory event constraining T cell activation upon antigen engagement. Efficient TCR signalling requires the inhibition of the alpha isoform of diacylglycerol kinase, DGKα, by an unidentified signalling pathway triggered by the protein adaptor SAP. We previously demonstrated that, in SAP absence, excessive DGKα activity makes the T cells resistant to restimulation-induced cell death (RICD), an apoptotic program counteracting excessive T cell clonal expansion. Results: Herein, we report that the Wiskott-Aldrich syndrome protein (WASp) inhibits DGKα through a specific interaction of the DGKα recoverin homology domain with the WH1 domain of WASp. Indeed, WASp is necessary and sufficient for DGKα inhibition, and this WASp function is independent of ARP2/3 activity. The adaptor protein NCK-1 and the small G protein CDC42 connect WASp-mediated DGKα inhibition to SAP and the TCR signalosome. In primary human T cells, this new signalling pathway is necessary for a full response in terms of IL-2 production, while minimally affecting TCR signalling and restimulation-induced cell death. Conversely, in T cells made resistant to RICD by SAP silencing, the enhanced DAG signalling due to DGKα inhibition is sufficient to restore apoptosis sensitivity. Conclusion: We discover a novel signalling pathway where, upon strong TCR activation, the complex between WASp and DGKα blocks DGKα activity, allowing a full cytokine response

    Targeting lysine-specific demethylase 1 (KDM1A/LSD1) impairs colorectal cancer tumorigenesis by affecting cancer cells stemness, motility, and differentiation

    Get PDF
    : Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse

    Extracellular vesicles from human plasma for biomarkers discovery: Impact of anticoagulants and isolation techniques

    Get PDF
    Extracellular vesicles (EVs) isolated from plasma are increasingly recognized as promising circulating biomarkers for disease discovery and progression, as well as for therapeutic drug delivery. The scientific community underlined the necessity of standard operative procedures for the isolation and storage of the EVs to ensure robust results. The understanding of the impact of the pre-analytical variables is still limited and some considerations about plasma anticoagulants and isolation methods are necessary. Therefore, we performed a comparison study between EVs isolated by ultracentrifugation and by affinity substrate separation from plasma EDTA and sodium citrate. The EVs were characterized by Nano Tracking Analysis, Western Blot, cytofluorimetric analysis of surface markers, and lipidomic analysis. While anticoagulants did not significantly alter any of the analyzed parameters, the isolation methods influenced EVs size, purity, surface markers expression and lipidomic profile. Compared to ultracentrifugation, affinity substrate separation yielded bigger particles highly enriched in tetraspanins (CD9, CD63, CD81), fatty acids and glycerolipids, with a predominant LDL- and vLDL-like contamination. Herein, we highlighted that the isolation method should be carefully evaluated prior to study design and the need of standardized operative procedures for EVs isolation and application to biomarkers discovery

    Mingling of human and veterinary strains of Staphylococcus aureus : an emerging issue in health-care systems

    Get PDF
    Aim: Methicillin-resistant Staphylococcus aureus remains a leading cause of hospital and community infections. We report a retrospective molecular characterization of S. aureus strains from different settings: hospital workers and patients, and veterinarian surgeons and pets. Materials and Methods: Eighty-nine S. aureus isolates obtained from nasal swabs of 10 patients, 17 health-care workers (HCWs), 9 pets, and 53 veterinarians were genotypically characterized by means of repetitive extragenic palindromic polymerase chain reaction (Rep PCR) and whole-genome sequencing. Results: Thirteen different sequence types (STs) were detected: ST398, ST22, ST8, ST30, ST15, ST5, ST121, ST45, ST10, ST6, ST34, ST97, and ST1. Two new STs differing from ST22 and ST5 for a single multilocus sequence typing gene were also identified. Rep PCR documented a genetic relationship among isolates obtained from 5 veterinarians and 10 HCWs. Conclusion: The large diversity of S. aureus strains detected may reflect a larger epidemiology within the hospital and community, in which companion animals likely act as a reservoir. We identified the circulation of ST5, ST8, ST15, ST22, ST30, ST45, and ST121 both in the hospital and veterinarian environment. Starting from the idea of a unique setting where our population lives, we consider the relationship between community- and hospital-acquired S. aureus

    Wiskott-Aldrich syndrome protein interacts and inhibits diacylglycerol kinase alpha promoting IL-2 induction

    Get PDF
    BackgroundPhosphorylation of diacylglycerol by diacylglycerol-kinases represents a major inhibitory event constraining T cell activation upon antigen engagement. Efficient TCR signalling requires the inhibition of the alpha isoform of diacylglycerol kinase, DGKα, by an unidentified signalling pathway triggered by the protein adaptor SAP. We previously demonstrated that, in SAP absence, excessive DGKα activity makes the T cells resistant to restimulation-induced cell death (RICD), an apoptotic program counteracting excessive T cell clonal expansion.ResultsHerein, we report that the Wiskott-Aldrich syndrome protein (WASp) inhibits DGKα through a specific interaction of the DGKα recoverin homology domain with the WH1 domain of WASp. Indeed, WASp is necessary and sufficient for DGKα inhibition, and this WASp function is independent of ARP2/3 activity. The adaptor protein NCK-1 and the small G protein CDC42 connect WASp-mediated DGKα inhibition to SAP and the TCR signalosome. In primary human T cells, this new signalling pathway is necessary for a full response in terms of IL-2 production, while minimally affecting TCR signalling and restimulation-induced cell death. Conversely, in T cells made resistant to RICD by SAP silencing, the enhanced DAG signalling due to DGKα inhibition is sufficient to restore apoptosis sensitivity.ConclusionWe discover a novel signalling pathway where, upon strong TCR activation, the complex between WASp and DGKα blocks DGKα activity, allowing a full cytokine response

    UPO Biobank: The Challenge of Integrating Biobanking into the Academic Environment to Support Translational Research

    No full text
    Biobanks are driving motors of precision and personalized medicine by providing high-quality biological material/data through the standardization and harmonization of their collection, preservation, and distribution. UPO Biobank was established in 2020 as an institutional, disease, and population biobank within the University of Piemonte Orientale (UPO) for the promotion and support of high-quality, multidisciplinary studies. UPO Biobank collaborates with UPO researchers, sustaining academic translational research, and supports the Novara Cohort Study, a longitudinal cohort study involving the population in the Novara area that will collect data and biological specimens that will be available for epidemiological, public health, and biological studies on aging. UPO Biobank has been developed by implementing the quality standards for the field and the ethical and legal issues and normative about privacy protection, data collection, and sharing. As a member of the “Biobanking and Biomolecular Resources Research Infrastructure” (BBMRI) network, UPO Biobank aims to expand its activity worldwide and launch cooperation with new national and international partners and researchers. The objective of this manuscript is to report an institutional and operational experience through the description of the technical and procedural solutions and ethical and scientific implications associated with the establishment of this university research biobank

    Structure activity relationship studies on Amb639752: toward the identification of a common pharmacophoric structure for DGK\u3b1 inhibitors

    Get PDF
    A series of analogues of Amb639752, a novel diacylglycerol kinase (DGK) inhibitor recently discovered by us via virtual screening, have been tested. The compounds were evaluated as DGK inhibitors on \u3b1, \u3b8, and \u3b6 isoforms, and as antagonists on serotonin receptors. From these assays emerged two novel compounds, namely 11 and 20, which with an IC50 respectively of 1.6 and 1.8\ua0\ub5M are the most potent inhibitors of DGK\u3b1 discovered to date. Both compounds demonstrated the ability to restore apoptosis in a cellular model of X-linked lymphoproliferative disease as well as the capacity to reduce the migration of cancer cells, suggesting their potential utility in preventing metastasis. Finally, relying on experimental biological data, molecular modelling studies allow us to set a three-point pharmacophore model for DGK inhibitors
    corecore