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Summary 

According to the World Health Organization, cancer incidence and mortality are rapidly growing 

worldwide. Despite improvements in cancer therapy, overall survival for most cancer types has 

changed a little in the past decades. Drug repositioning represents a promising approach for 

discovering new therapeutic strategies for cancer therapy.  

Since several epidemiological studies reported lower cancer incidence in individuals receiving long 

term psychotropic drugs treatment, in this project we investigated 27 psychotropic drugs for their 

cytotoxic activity in colorectal carcinoma, glioblastoma and breast cancer cell lines. Consistent with 

the cationic amphiphilic structure of the most cytotoxic compounds, we investigated their effect on 

mitochondrial and lysosomal compartments. Penfluridol, ebastine, pimozide, fluoxetine, fluspirilene 

and nefazodone showed significant cytotoxicity, in the low micromolar range, in all cell lines tested. 

In MCF7 cells these drugs triggered mitochondrial membrane depolarization, increased the acidic 

vesicular compartments and induced phospholipidosis. Both penfluridol and spiperone induced 

AMPK activation and autophagy. Neither caspase nor autophagy inhibitors rescued cells from death 

induced by ebastine, fluoxetine, fluspirilene and nefazodone. Treatment with 3-methyladenine 

partially rescued cell death induced by pimozide and spiperone, whereas enhanced the cytotoxic 

activity of penfluridol. Conversely, inhibition of lysosomal cathepsins significantly reduced cell death 

induced by ebastin, penfluridol, pimozide, spiperone and mildly in fluoxetine treated cells.  

Lastly, spiperone cytotoxicity was restricted to colorectal cancer and breast cancer and caused 

apoptotic cell death in MCF7 cells. Our unpublished data on the characterization of spiperone activity 

on both adherent and stem-like colorectal cancer cells demonstrated that its cytotoxicity is mainly 

linked to perturbations of intracellular calcium (Ca2+) homeostasis, which likely result in 

mitochondrial Ca2+ overload and membrane depolarization, cell cycle block in G1 phase, and 

apoptosis. Spiperone induced a PLC dependent Ca2+ release from the endoplasmic reticulum (ER) 

along with ER stress and unfolded protein response activation, resulting in CHOP upregulation. 

In conclusion, the cytotoxicity of psychotropic drugs with cationic amphiphilic structures relied on 

simultaneous mitochondrial and lysosomal disruption and induction of cell death that does not 

necessarily require apoptosis. Dual targeting of lysosomes and mitochondria constitutes a new 

promising therapeutic approach for cancer, particularly those in which the apoptotic machinery is 

defective. Besides, the newly identified mechanism of action of spiperone in cancer cells could 

represent a starting point for the development of new therapeutic strategies.  

Altogether these data support the clinical development of psychotropic drugs for cancer therapy. 
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1.1 Cancer: a major worldwide public health problem  

In the 21st century, according to the World Health Organization (WHO), cancer incidence and 

mortality are rapidly growing worldwide. The lifetime cumulative risk of developing cancer is about 

10% for both women and men [1]. Moreover, by being the first or second cause of death before age 

70 in 91 out of 172 countries, cancer represents one of the major obstacles to the increase of life 

expectancy [2].  

In 2018, GLOBOCAN estimated a total of 18.1 million new cases and 9.6 million cancer deaths all 

over the world [2], with lung, breast and colorectal cancer as the top three cancers worldwide in term 

of incidence, whereas the first, the fifth, and the second respectively, in term of mortality [3](Figure 

1). 

An additional emerging challenge in the oncological field is represented by population aging, in fact, 

it is well established that cancer incidence and mortality increase in elderly with nearly 50% of all 

new cancer cases each year diagnosed in people over 70 along with a 16-fold increase in mortality 

rate in this population [4]. Since demographic projection suggests that the major part of the population 

is expected to live more than 60 years (Who, 2018), the age-related increase in tumor incidence, along 

with the expected rise in the number of elderly people, will trigger an elevated number of elderly 

oncological patients, highlighting not only the scientific achievements accomplished in term of cancer 

treatment, but also the need of a constant effort by the scientific community on this major public 

health problem. 

https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
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Figure 1 Pie charts presenting the distribution of cases and deaths for 

the 10 most common cancers in 2018 for (A) Both sexes, (B) Males, and 

(C) Females. For each sex, the area of the pie chart reflects the proportion 

of the total number of cases or deaths (Adapted from Bray et al., 2018) 
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1.1.1 Breast cancer 

In 2018 GLOBOCAN estimated about 2.1 million newly diagnosed breast cancer cases, which 

account for almost 1 out of 4 cancer cases among women [2]. However, there is a high variability of 

the incidence-mortality ratio worldwide: while in low-income countries the overall incidence is lower 

with a high mortality rate, in developed countries incidence is constantly increasing, although a major 

improvement in mammographic screening, diagnosis and management is significantly reducing the 

mortality rate [5].  

At present, the identification of successful strategies and interventions to prevent breast cancer is still 

challenging, although many risks factor associated with the development of this tumor have been 

identified, such as age, family history (such as the inheritance of BRCA1 and BRCA2 mutations), 

reproductive factors, estrogen exposure, life style and bad dietary habits [6]. 

Breast cancer is a heterogeneous complex of diseases, a spectrum of many subtypes with distinct 

biological and clinical features [7]. The classification system is based on histopathology, histologic 

grade, stage, and receptor status. Breast cancer is classified into four main histological types: ductal 

carcinoma in situ (DCIS), infiltrating ductal carcinoma (IDC), lobular carcinoma in situ (LCIS) and 

invasive lobular carcinoma (ILC). IDC is the most frequent and is characterized by the presence of 

infiltrating tumor cells in the surrounding stromal tissue [8]. Based on tumor cell differentiation, 

tumors can be distinguished into low grade - I (differentiated cells), intermediate grade - II 

(moderately differentiated cells), and high grade - III (poorly differentiated cells). Cases characterized 

by undifferentiated cells and nuclear heterogeneity are associated with the worst prognosis [9]. The 

stage of the tumor is determined by the conventional TNM (tumor, node, metastasis) classification, 

which considers tumor size (T1 to T4), involvement of lymph nodes (N0 to N3) and presence of 

metastasis (M0 or M1) [10]. 

According to the receptor status and the proliferative rate (defined by the Ki67 staining), breast cancer 

could be distinguished in three distinct molecular subtypes: luminal-like, basal-like and epidermal 

growth factor receptor 2 positive (HER-2+) (Table 1). 

Luminal-like breast cancers are localized close to the luminal side of the duct and could be further 

distinguished into two different subtypes: luminal A and luminal B. Luminal A tumors show elevated 

expression of estrogen (ER) and/or progesterone receptors (PR), while moderate expression of 

proliferative genes and absence of HER2 is observed [11, 12]. Luminal B tumors are usually 

characterized by higher aggressiveness because of the greater expression of proliferative genes along 

with a lower expression of ER. If luminal A tumors are usually sensitive to endocrine therapies, 

luminal B tumors are less sensitive and usually lead to tumor relapse [13]. 
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The HER-2+ subtype is distinguished by the overexpression or the amplification of the oncogene 

HER2 along with the absence of PR and ER. For patients diagnosed with HER-2+ subtype, the 

therapy is usually based on the administration of a monoclonal antibody, such as Trastuzumab, 

targeting HER2 in combination with chemotherapy. However, despite improvement in therapy, HER-

2+ patients usually undergo tumor relapse with a short overall survival rate [14]. 

Lastly, the basal-like subtype is characterized by a lack of PR and ER expression as well as HER2 

overexpression, for this reason, it is called triple-negative breast cancer. This subtype is usually 

referred to as the most aggressive with a high risk of relapse and poor prognosis. The only therapy 

for patients with triple-negative breast cancer is chemotherapy [15, 16]. 

 

The current strategy for breast cancer patients is divided into two subtypes: local treatment and 

systemic treatments. Local treatment is usually the first choice for early-stage breast cancers, and it 

consists of breast-conserving surgical resection of the neoplastic lesion along with radiotherapy or 

mastectomy. This strategy leads to nearly 5 % of the local tumor recurrence rate in 10 years. Also, 

before tumor rejection, neoadjuvant chemotherapy is usually administrated to downstage the disease 

and enable breast conservation [17]. 

After surgical rejection, patients undergo systemic therapy with the purpose to reduce the risk of 

recurrence and metastasis. The therapy is usually selected according to the disease burden (lymph 

nodes involved, size of the primary tumor) and disease biology (receptor status and genetic 

alterations). For patients that display a severe prognosis, chemotherapy, containing both an 

anthracycline and a taxane is generally recommended. Instead, for HER-2+ breast cancers, targeted 

therapy including trastuzumab and pertuzumab in combination with chemotherapy reduces by 50% 

tumor recurrence [18, 19].  

Table 1 Classification of 4 major subtypes of invasive breast cancer and their corresponding clinical 

features, current treatment (Adapted from Tang et al., 2016) 
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Lastly, endocrine therapy is proposed to patients with ER and PR positive disease for 5 or 10 years. 

It was in fact reported that the administration for five years of adjuvant tamoxifen decreases the risk 

of tumor relapse by approximately 50% during years 0-4, with a constant risk reduction of more than 

30% in years 5-9 [17]. In this context, tamoxifen, a selective ER antagonist, block the ER-estrogen 

binding, whereas fulvestrant directly interferes with ER synthesis [20, 21]. 

Although the significant progress in local and systemic treatments, tumor heterogeneity and genomic 

instability allows the selection of therapy-resistant clones that may cause a relapse. For this reason, it 

is necessary to identify more effective therapies or synergetic combinations strategies to overcome 

therapy resistance and recurrence [22]. 

 

1.1.2 Colorectal cancer 

Colorectal cancer (CRC) is one the most common malignancies with an estimated over 1.8 million 

newly diagnosed cases about 1 million deaths worldwide each year. In Western countries it ranks, in 

both sexes, third in terms of incidence but second in terms of mortality. Moreover, temporal profiles 

and demographic projections suggest that the global burden of CRC is expected to increase by 60% 

by 2030 [2] (Global Cancer Observatory (GCO)). Aging represents a major risk factor for CRC. 

Incidence strongly increases after the age of 40; 95% of the patients with a diagnosis of CRC can be 

accounted for in the range between 45 and 75 years. Approximately 60% of CRC patients are >70 

years of age at the time of diagnosis, and 40% are >75 (https://gco.iarc.fr/). Other important risk 

factors are mainly associated with lifestyle and nutrition, including poor dietary habits, smoking and 

low physical activity [23].  

The majority of CRC are sporadic, accounting for about 70% of cases, with no family history or 

genetic predisposition and are mainly characterized by an acquired mutation in APC, TP53 and 

SMAD4 [24]. The remaining 30% of cases are represented by familiar CRC, which can be categorized 

into hereditary diseases (4-7%) arising in the setting of well-defined highly penetrant inherited 

syndromes, and familiar, non-Mendelian inherited diseases (10-30%). The most common inherited 

CRC are represented by high-risk susceptibility syndromes related to polyp formation such as Lynch 

syndrome or Hereditary Non-Polyposis Colorectal Cancer (HNPCC, 4%) which is characterized by 

MSI, a consequence of a defective DNA mismatch repair (MMR) system, and familial adenomatous 

polyposis (FAP, 1%), characterized by a mutated copy of the adenomatous polyposis (APC) gene 

[25]. 

From a molecular point of view, CRCs can be divided into three main categories associated to distinct 

phenotypes: microsatellite instability (MSI), chromosomal instability (CIN), and CpG island 

https://gco.iarc.fr/
https://gco.iarc.fr/
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methylator phenotype (CIMP) [26]. All CRCs develop slowly and silently until they reach 

considerable size, resulting in polyps, precancerous lesions characterized by aggregations of cells 

within intestinal mucosa that protrude into the intestinal lumen [27].  

 

 

The progression from this benign lesion to invasive CRC is mediated by the sequential acquisition of 

genetic and epigenetic modifications [26]. The first step is usually represented by the inactivation of 

APC and suppression of Wnt/β-catenin destruction complex (Figure 2). Consequently, β-catenin, 

which is now accumulated inside the cytoplasm, is translocated into the nucleus where form 

complexes with the transcription factors TCF/LEF and activates the downstream effectors of Wnt, 

promoting proliferation, migration, invasion and metastasis [28]. Consequently, oncogenic KRAS 

mutations can occur and eventually deletion of chromosome18q (LOH18q), SMAD4 mutations and 

loss of TP53 (LOH17p) in the last stages of tumor progression [29, 30]. 

Activating mutations of KRAS or BRAF, deletion of chromosome18q (DCC), SMAD4 mutations 

and loss of TP53 (LOH17p) are typical and frequent mutations acquired during tumor progression. 

Mutations in KRAS, BRAF and TP53, are specific markers of CIN tumors, representing 85% of 

cases, and characterized by genomic instability and frequent loss of whole or large portions of 

chromosomes [31].  

Conversely, MSI phenotype constitutes 15-20% of sporadic CRC and more than 95% of HNPPC. 

These tumors are characterized by DNA MMR genes deficiency that causes replication errors in 

microsatellites, leading to progressive insertions or deletions and resulting in frameshift mutations of 

oncogene or onco-suppressor genes such as BAX (38% of cases) and TGFBR2 (79% of cases) [26, 

32]. 

Figure 2 Representation of different steps of progression in Colorectal cancer (Adapted from Niguyen 

et al. 2018) 
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Lastly, CIMP is found in 35% of cases and is represented by an aberrant methylation phenotype in 

which a variety of tumor suppressor genes are silenced by CpG islands methylation [33]. 

Despite several improvements, CRC treatment remains a demanding challenge. The 5-year survival 

rate is approximately 90% in patients diagnosed at an early stage; however, only 39% of tumors are 

diagnosed at this stage; in fact, around 20% of patients show metastasis already at the time of 

diagnosis, with the liver being one of the most affected organs [34, 35] and CRC survival declines to 

12.5 % when the disease has spread to distant organs [35].  

Surgery is the first option for patients with early CRC, while neoadjuvant chemotherapy or 

radiotherapy remains the main option for patients with advanced CRC [36]. Chemotherapy includes 

two distinct regimens: FOLFOX, which involves 5-fluorouracil, leucovorin and oxaliplatin and 

FOLFIRI, which involves 5-fluorouracil, leucovorin and irinotecan [36]. Moreover, two main 

biologic agents are used as first-line therapy and are represented by cetuximab, a monoclonal antibody 

that targets the epidermal growth factor receptor (EGFR) and bevacizumab, a monoclonal antibody 

against the vascular endothelial growth factor (VEGF) [37].  

 

1.2 Challenges in cancer treatment 

 

1.2.1 Drug resistance 

Despite the advances in the development of new therapeutic strategies for the management of cancer 

patients, drug resistance and the subsequent ineffectiveness of drug treatment are responsible for 

nearly 90% of cancer-related deaths [38]. The factors involved in drug resistance are varied: enhanced 

drug efflux, survival cues from the microenvironment, epigenetic changes or/and genetic mutations 

impairing cell death and sustaining cell survival (Figure 3) [39]. Drug resistance can be both intrinsic 

and acquired. Whereas intrinsic drug resistance already exists at the time of the first treatment, 

acquired drug resistance develops during therapy; however, since acquired drug resistance 

mechanisms can be entirely different from the pre-existing ones, both these processes can coexist 

during tumor progression [40]. 

Intrinsic drug resistance, also defined as innate resistance, is one of the major causes of therapy 

ineffectiveness and tumor relapse. It is caused by three main mechanisms: i) activation or 

enhancement of intracellular pathways crucial for the resistance to environmental toxins; ii) pre-

existing genetic mutations that, in the majority of cancers, lead to decreased responsiveness of tumor 
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cells, not only to chemotherapy but also hormone and biological therapies; iii) cancer heterogeneity, 

in which unresponsive subpopulations, such as cancer stem cells, will be selected upon drug treatment 

causing tumor relapse [38]. 

Conversely, acquired drug resistance occurs during cancer treatment and it is mediated by both 

environmental and genetic factors that facilitate the development of drug-resistant tumor cell clones. 

Some of the leading causes are represented by the activation of secondary proto-oncogenes, 

alterations in crucial metabolic pathways, altered expression or selection of mutated drug targets, 

modifications in the tumor microenvironment (TME) [40]. 

Among the molecular mechanisms that lead to chemoresistance, drug resistance-associated 

membrane proteins play a crucial role, in fact, they reduce intracellular drug accumulation by 

extruding drug molecules out of cells and indirectly affect drug accumulation through 

physicochemical processes [41]. The ATP-binding cassette (ABC) transporter superfamily is the 

main group of membrane transporters involved in drug efflux, including 48 genes grouped into 7 

subfamilies (ABCA-ABCG) [42]. Among these subfamilies, ABCB1 (MDR1 or P-gp), ABCC1 

(MRP1) and ABCG2 (or breast cancer resistance protein) are involved in the acquisition of multidrug 

resistance (MDR) in many cancer types [38]. 

ABCB1, one of the most studied ABC transporters, is characterized by a nucleotide-binding domain, 

that bind and hydrolyze ATP, while the two transmembrane domains generate a passage for the 

amphipathic and lipid-soluble substrates. ABCB1 has multiple drug binding sites and it can bind and 

extrude many chemotherapeutic agents such as paclitaxel, doxorubicin, and vinblastine [43–45]. 

ABCG2 is strongly associated with breast cancer chemoresistance, apart from being reported as a 

marker of cancer stem cells in some tumors [46, 47]. It leads to the efflux of both positively and 

negatively charged drugs including not only chemotherapeutic agents but also several, newly 

identified, target drugs such as several TKIs like imatinib and gefitinib [48]. 

Another crucial role in chemoresistance is played by the tumor microenvironment (TME), which is 

characterized by the presence of several cell types including immune and inflammatory cells, and the 

extracellular matrix (ECM). It was observed that while in normal condition extracellular pH (7.3-7.5) 

is usually more basic than intracellular pH (6.8-7.2), during tumor progression cancer cells are 

characterized by the reversed pH gradient, that leads to increased intracellular pH and decreased 

extracellular pH, leading to the impairment of the normal distribution of weak base anticancer drugs 

through the phenomenon called ion trapping [38]. In this context, lansoprazole, an example of a 

proton pump inhibitor demonstrated a synergistic effect in vivo in combination with paclitaxel [49]. 

Furthermore, TME can also support the enrichment of genetic heterogeneity. Because of the dynamic 

variation of the intra-tumoral vasculature, fluctuating hypoxia can lead to oxidative stress which 
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results in genetic instability, accumulation of mutation, and selection of a different clonal 

subpopulation [38]. 

From a genetic point of view, the DNA damage repair (DDR) pathway represents an additional crucial 

component in the response to several targeted therapies and chemotherapy drugs and genes involved 

in the DDR response are frequently upregulated in cancer [50]. For example, FANCG, FEN1, 

RAD23B were identified upregulated in 5-FU resistant human CRC cell lines [51]. This response 

leads to the upregulation of p53 target genes in cancer cells, resulting in DNA damage repair and 

reduced cell cycle arrest and apoptosis [51, 52]. 

Senescence is a stable type of growth arrest, usually (but not only) caused by persistent activation of 

the DNA damage response (DDR) and other stress conditions that significantly alter cell morphology, 

gene expression and/or secretory program [53]. Despite the previous belief that chemotherapy-

induced senescence was an irreversible state, more recent observations sustain the hypothesis that 

cancer cells can escape cell cycle arrest. In this scenario, senescence represents a mechanism allowing 

a long term survival of a subset of cancer cells with stem-like features that can re-enter the cell cycle 

and contribute to tumor relapse [54, 55]. The eradication of senescent could therefore provide a 

survival advantage for oncological patients, and recent studies are investigating the efficacy of 

senolytic agents for cancer therapy [53, 55, 56]. 

Figure 3 Representation of cells, protein factors, and mechanisms involved in drug resistance in 

cancer (including extracellular ATP-induced resistance. ABC: ATP binding cassette; RTK: receptor 

tyrosine kinases; EGFR: epidermal growth factor receptor; TAM: tumor-associated macrophage) 

(Adapted from Wang et al., 2019) 
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1.2.2 Cancer stem cells (CSCs) 

As previously mentioned, heterogeneity is one of the major characteristics of cancer cells and 

represents one of the main causes of intrinsic drug resistance. In the past few decades, scientists 

identified a subpopulation of tumors cells with stem-like features that, like normal stem cells, are 

capable of self-renewal and proliferation. These cells, defined as Cancer Stem Cells (CSCs) now are 

recognized as the major challenge in cancer therapy for their distinct features, including self-renewal, 

proficiency to maintain a quiescent state, resistance to anticancer agents, capability to originate new 

tumor masses and metastases [57–59]. CSCs can undergo both symmetric and asymmetric cell 

division. Symmetric cell division leads to the production of two identical daughter CSCs and allows 

self-renewal and expansion of CSCs population; asymmetric cell division results in the production of 

one daughter CSC (self-renewal) and a daughter progenitor cell able to expand and generate the tumor 

mass [60].  

Several studies reported that CSCs are mainly enriched in late stages of cancer progression and after 

chemotherapy [61, 62], demonstrating that conventional treatments such as chemo- and radiotherapy, 

are not effective in targeting CSCs, rather they contribute to induce a stem-like phenotype. Resistant 

CSCs are then responsible for tumor recurrence (Figure 4) [63]. 

Chemoresistance is primarily linked to CSC ability to remain quiescent in a so-called dormancy state, 

that is mainly associated with the increased expression of multiple genes, including TGF-β2, p53, 

RB, cyclin-dependent protein kinase inhibitors (p27, p21, and p57), Notch- pathway-related proteins, 

along with FoxOs (Forkhead Box O) and NFI (Nuclear Factor 1) transcription factors [64]. 

Furthermore, recent pieces of evidence show that acquired mechanisms of CSCs chemoresistance are 

directly associated with their highly effective DNA repair mechanisms and their efficient resistance 

against reactive oxygen species (ROS) [59]. 

Another characteristic of CSCs is their capacity to disseminate from their primary site to distant sites 

where they may seed new metastatic colonies. Many studies demonstrated that compared to epithelial 

cells, which generally require attachment to extracellular matrix or other cells to survive, therapy-

resistant CSCs acquire mesenchymal features that promote metastasis, including higher expression 

of EMT transcription factors and a progressive increase in stemness markers (CD133, OCT4, SOX2, 

CD44 and Nanong) [65–67]. 

Besides, several studies highlighted that CSCs differently respond to anticancer treatment in vitro and 

in vivo suggesting the crucial role of the niche environment, which is usually characterized by the 

presence of different cell types, including fibroblasts, perivascular and vascular cells, and tissue 

macrophages. However, even if some studies propose a model of CSC-niche interactions mediated 

by cytokine receptors, adhesion receptors, membrane-bound and soluble cytokine ligands, and 
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various chemotactic factors, still little is known about how these cells or the niche micro-environment 

affects CSCs stemness and proliferation [68]. 

Altogether these shreds of evidence suggest not only the need for a better understanding of CSCs 

biology and the necessity of novel therapeutic strategies that can prove effective in eradicating not 

only the bulk of the tumor, but also the tumor latent and chemoresistant subset of CSCs. 

 

1.3. Cell death pathways for cancer therapy  

1.3.1 Apoptosis: the main target of anticancer therapies 

Apoptosis represents a regulated mechanism of cell death; it occurs physiologically and leads to the 

removal of unnecessary or damaged cells by maintaining the balance between cell proliferation and 

cell death [69]. During cancer progression, the impairment of apoptotic control allows tumor cells to 

survive longer, leading to the accumulation of mutations that can increase their invasiveness, interfere 

with differentiation, deregulate cell proliferation, and stimulate angiogenesis [70]. For these reasons, 

in recent years, apoptosis has been considered a crucial process for cancer treatment, and most of the 

research in drug discovery is focused on the development of therapies inducing apoptosis [69]. 

Figure 4 Effect of conventional and targeted therapy on tumor cells and 

cancer stem cells (CSCs) during carcinogenesis (Adapted from Kuşoğlu et al., 

2019) 
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The great interest in understanding the apoptotic process headed to a clear comprehension of two 

distinct molecular signaling pathways involved: the intrinsic or mitochondria-mediated pathway, and 

the extrinsic, or extracellular triggered pathway (Figure 5) [71]. 

 

Intrinsic apoptosis is activated in response to several cellular perturbations such as ROS, growth 

factor withdrawal, endoplasmic reticulum (ER) stress, DNA damage, mitotic defects [72]. A crucial 

event in intrinsic apoptosis is the irreversible outer mitochondrial membrane permeabilization 

(MOMP) which is regulated by the pro-apoptotic members of the BCL-2 family [73]. In normal 

conditions, BAK and BAX exist as inactive monomers and, while BAK constitutively resides at the 

outer mitochondrial membrane (OMM), BAX constantly cycles between the cytosol and the OMM. 

Upon apoptosis induction, BAX and BAK undergo direct or indirect activation by pro-apoptotic BH3-

only proteins BID, BIM, PUMA and NOXA [74]. Activated BAX can form oligomers that pierce the 

OMM, causing MOMP and the formation of pores. The MOMP is mainly antagonized by the 

antiapoptotic members of the BCL2 family such as BCL2 itself, BCL2 like 1 (BCL2L1/BCL-XL), 

BCL2 family apoptosis regulator (MCL1), BCL2 like 2 (BCL2L2/BCL-W), and BCL2 related protein 

A1 (BCL2A1/BFL-1).  This group of proteins mainly resides at the mitochondrial or ER membrane 

and inhibits proapoptotic proteins by direct binding [73]. 

Figure 5 Schematic representation of both intrinsic (or 

mitochondrial pathway) and extrinsic (death receptor 

mediated) apoptotic pathway (Adapted from Czabotar et 

al., 2013) 
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MOMP results in the release of apoptogenic factors that usually reside in the mitochondrial 

intermembrane space including the electron shuttle, cytochrome C and diablo IAP-binding 

mitochondrial protein (DIABLO/SMAC) [72]. The cytosolic cytochrome C leads to the formation of 

the apoptosome and activation of the pro-caspase 9 (CASP9), which then leads to the activation of 

CASP3 and CASP7 [75]. Conversely, when released into the cytosol, SMAC triggers apoptosis by 

associating with proteins belonging to the family of the inhibitor of apoptosis (IAP) such as the X-

linked inhibitor of apoptosis (XIAP) [76]. 

While intrinsic apoptosis is triggered by intracellular perturbations, extrinsic apoptosis is mediated 

by two plasma membrane receptors: death receptors and dependence receptors [72]. Death receptors 

include FAS and TNFR1 that, after binding to their ligands - FAS ligand and TRAIL respectively – 

induce the cleavage of CASP8. This event triggers the activation of CASP3 and CASP7 mainly in 

lymphocytes and thymocytes. In other cell types such as cancer cells (in which CASP3/7 activation 

is controlled by XIAP), CASP8 triggers the truncation of BID (tBID) that translocates to the OMM 

and acts as BH3-only protein. This event leads to the activation of BAX and BAK-dependent MOMP-

driven resulting in regulated cell death controlled by CASP9 [77]. Extrinsic apoptosis can also be 

mediated by dependence receptors (DR). These receptors lead to cell death when the concentration 

of their ligands decreases and reaches a limit threshold [72]. Nearly twenty members belong to the 

DR family, including netrin 1 receptors, neurotrophin receptor neurotrophic receptor tyrosine kinase 

3 (NTRK3); and the sonic hedgehog (SHH) receptor patched 1 (PTCH1) [72, 78]. Generally, the 

absence of ligands leads to a conformational change in DR resulting in increased DR susceptibility 

to caspases proteolytic cleavage, a crucial step for caspase amplification and apoptosis induction [78]. 

However, the mechanisms behind extrinsic apoptosis mediated by dependence receptors remain 

unclear, its clearer comprehension could lead to the identification of a therapeutic strategy that 

prevents cancer cell proliferation by inducing apoptotic cell death [78, 79]. 

Nowadays, chemotherapy and radiotherapy represent the backbone of cancer treatment. These 

traditional strategies trigger apoptosis induction through direct DNA damage and ROS production, 

however, cancer cells usually acquire mechanisms that lead to apoptosis resistance, in particular by 

downregulating pro-apoptotic signals and upregulating anti-apoptotic signals [80]. For example, the 

overexpression of Bcl-2 inhibits cell death and develops cell resistance to DNA damage factors 

including several chemotherapeutic drugs [81]. Nearly 80% of tumors are triggered by dysfunctional 

p53 signaling and 50% of cases carry p53 gene inactivation. Aberrant p53 expression leads to the 

downregulation of Bax/Noxa/Puma expression and upregulates Bcl-2, resulting in impeded 

cytochrome C release from the mitochondria and apoptotic resistance [80]. Besides, it was reported 
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that the aberrant upregulation of IAPs abolishes the downstream caspase cascade resulting in 

improved cancer progression [82]. 

Thus, alternative cell death pathways capable of killing apoptosis- and therapy-resistant cancer cells, 

have gained considerable interest among cancer researchers. 

 

1.3.2 Mitochondrial targeting in cancer treatment 

The intracellular role of mitochondria is not only related to apoptosis, in fact, mitochondria are also 

defined as the powerhouse of the cell and their biosynthesis, bioenergetics, and signaling are crucial 

for cancer progression [83]. During neoplastic progression, cancer cells acquire molecular 

modifications that cause not only alterations of the mitochondrial apoptotic pathway but also 

metabolic modifications, such as increased glycolytic metabolism and resistance to hypoxia. These 

events trigger abnormal lactate secretion along with tumor microenvironment acidification, resulting 

in a favorable setting for tumor invasion [84]. 

From a biochemical point of view, the strategies for mitochondrial targeting in cancer treatment are 

mainly divided into four macro-areas: (1) targeting bioenergetics, (2) targeting the biosynthetic 

function, (3) targeting the redox capacity, (4) targeting the mitochondrial membrane (MM). 

Targeting mitochondrial ATP production has always been considered a non-effective strategy since 

cancer cells can upregulate glycolysis to produce ATP, bypassing the lack of ATP production from 

altered mitochondria [83]. On the other hand, it is well-known that during tumorigenesis the bulk of 

the tumor is characterized by low oxygen and low glucose concentration and that the electron 

transport chain (ETC) efficiently works at oxygen levels as low as 0.5% [83, 85]. Consequently, even 

poorly perfused tumors, with low glucose availability, have enough oxygen to generate mitochondrial 

ATP. Therefore, mitochondrial bioenergetic targeting could be an effective strategy both in poorly 

perfused tumors, possibly in synergy with therapies targeting glycolysis, such as PI3K signaling 

pathway inhibitors [86]. In this context, metformin, the widely used antidiabetic drug, is a promising 

candidate, because of its inhibitory effect on the complex one of ETC [83]; however, its use in 

advanced tumors therapy is still under investigation [87]. The compound VLX600, an ETC inhibitor, 

significantly reduced colon cancer cell growth especially in presence of low glucose availability [88]; 

whereas, degueling, a complex 1 inhibitor, was recently reported to act as an effective metabolic 

regulator by inducing energy starvation and cell death in drug-resistant melanoma cells [89]. 

Mitochondrial tricarbossilic acid cycle (TCA) intermediates play a crucial role non only for the 

production of energy but are required for anabolic reactions. Recent studies have proven that cancer 

cells can uncouple glycolysis from the TCA cycle, granting the consumption of additional fuel 
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resources, such as glutamine, to fulfill their increased metabolic demands [90]. Therefore, strategies 

targeting TCA intermediates seem an additional interesting approach in impairing cancer cell survival 

[90, 91]. 

In addition to the aforementioned strategies, targeting the mitochondrial redox capacity in cancer cells 

seems another interesting strategy. It is well established that the high metabolic activity characterizing 

proliferative cancer cells is associated with elevated production of ROS [92]. In order to balance the 

high production of mitochondrial ROS, tumor cells have evolved adaptive strategies to improve their 

antioxidant systems and to employ ROS in triggering pathways advantageous for cancer cell 

adaptation and survival to environmental changes, as well as cell proliferation and metastasis [83, 

92]. Thus, further studies are needed to elucidate antioxidant defense systems in cancer cells to 

develop adjuvant therapies, that in combination with chemo- and radiotherapy, could enhance 

present-day therapeutic strategies. 

Historically, necrosis has been viewed as an uncontrollable form of cell death with default status. 

However, more recent studies have shown that, under certain cellular contexts, necrosis can be a 

highly regulated form of cell death in adult vertebrate organisms. Regulated necrosis is simply defined 

as caspase-independent cell death that has all the morphological hallmarks of classical necrosis but 

that can be inhibited or accelerated by affecting one or more key molecular components. 

In recent years, attention has been growing towards the role of the mitochondria in inducing death 

with a necrotic morphotype [72]. This mechanism of cell death is caused by the rapid dissipation of 

the mitochondrial membrane potential (Δψm), loss of ATP production, and the osmotic collapse of 

mitochondria, caused by openings of the mitochondrial permeability transition pore (MPTP) and 

triggered by specific perturbation of the intracellular environment, including Ca2+ overload or severe 

oxidative stress [93] (Figure 6).  

Caspase activation, which is necessary for apoptosis, is ATP dependent and typically requires some 

degree of mitochondrial function, while necrosis is an ATP independent process where it progresses 

in conjunction with a complete loss of mitochondrial function [94]. MPTP opening and mitochondrial 

swelling and rupture also cause the release of apoptogenic factors such as cytochrome c; but, in the 

absence of sufficient ATP, the formation of the apoptosome and caspase activation is blocked so that 

the cell perishes through a necrotic process [95]. 

The MPTP forms within the inner membrane of the mitochondrion where it permits the diffusion of 

molecules up to 1.5 kDa [96]. The classical model of the MPTP was proposed to be a contiguous pore 

spanning the outer and inner mitochondrial membranes and consisting of the voltage-dependent anion 

channel (VDAC, outer membrane) and adenine nucleotide translocator (ANT, inner membrane), 

regulated by the peptidylprolyl isomerase F (PPIF; also identified as cyclophilin D, CypD) within the 
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mitochondrial matrix. More recently, evidence has emerged that both ANT and VDAC are not direct 

components of the MPTP, whereas the mitochondrial F1F0 ATP synthase and CypD serve as the core 

component of the MPTP within the inner membrane [97]. In fact, MPTP-driven necrosis is limited 

by CYPD inhibitors, such as cyclosporin A (CsA), JW47 and sanglifehrin A (SfA) [72], whereas 

purified components of the F1F0 ATP synthase reconstituted into lipid bilayers could recapitulate pore 

activity similar to that of the MPTP [98]. 

 

The MTPT-driven necrosis is regulated by several PTPC interactors, including the BCL2 family 

members [99], p53 [100], but also by the dynamin-related protein 1 (DRP1), which triggers PTPC 

opening when phosphorylated by calcium/calmodulin-dependent protein kinase II (CAMKII), after 

chronic activation of the β adrenergic receptor [101].  

Moreover, the latest evidence highlight the importance of tight Ca2+ mitochondrial homeostasis for 

cellular survival, by identifying a possible role of the IMM Ca2+ uniporter (MCU) in MPTP-driven 

necrosis [102]. 

In summary, the understanding of mitochondria biology and the development of therapies aiming to 

directly target the powerhouse of the cell could represent a new strategy in order to target apoptotic-

resistant cancer cells. 

1.3.3 Role of autophagy in cancer treatment 

Autophagy is an evolutionary conserved pro-survival stress response, through which cellular contents 

are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo 

degradation [103]. Autophagy will be activated under situations of nutrient deprivation to maintain 

Figure 6 Structure of the mitochondrial permeability transition pore (MPTP). Schematic representation 

of the original model of the MPTP as a contiguous pore composed of VDAC and ANT regulated by CypD 

(A). Schematic image of the new model of the MPTP consisting of Bax/Bak on the outer mitochondrial 

membrane and the F1FO ATP synthase regulated by CypD in the matrix (Adapted from Karch et al 2004) 
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cellular homeostasis by enriching nutrient pools. Autophagy also serves to remove damaged and 

potentially harmful organelles, thereby supporting cell survival. Up to date, three different types of 

autophagy are known: micro-autophagy that is characterized by direct engulfment of material by the 

lysosome; chaperone-mediated autophagy that requires the recognition by the heat shock protein 

(hsp70) of the amino acid motif (KFERQ) and the delivery to the lysosome through the lysosomal 

protein LAMP2A; macro-autophagy, the best characterized, which requires the formation of double-

membrane vesicle named autophagosomes [104]. 

Macro-autophagy (hereafter mentioned as autophagy) is a complex mechanism usually induced by 

nutrient deprivation and/or other stress conditions such as hypoxia or endoplasmic reticulum (ER) 

stress [105], in mammal it is regulated by an intricate network of signaling pathways among which 

AMPK and PI3K/mTORC1 pathways play a pivotal role (Figure 7). 

The first step of autophagy is represented by the formation of the phagophore, a double membrane 

vesicle deriving from small membranous portions of broken organelles, further elongated and closed 

by the autophagy-related protein (ATG) complexes. Among these complexes, the Unc-51-Like 

Kinase (ULK) complex (composed of the ULK1/2 protein kinase, the FIP200 scaffold protein, 

ATG13 and ATG101) [106] leads to the activation of class III PI3K complex (composed of the VPS34 

lipid kinase, VPS15, Beclin and ATG14). PI3K, in turn, produces phosphatidylinositol-3-phosphate, 

necessary for elongation of the phagosome [107].  

Autophagosome formation involves two successive ubiquitin-like reactions. The first reaction 

employs the E1-like ATG7 and the E2-like ATG10 enzymes, which conjugate the ubiquitin-like 

ATG12 to ATG5. This conjugate then forms a complex with ATG16L1. The second set of reactions 

involves the ubiquitin-like LC3 protein family. LC3-I is generated by proteolytic cleavage of pro-

LC3 by ATG4, which exposes a C-terminal glycine that is amenable to conjugation. ATG7, the E1-

like enzyme, ATG3, an E2-like enzyme, and the ATG5-12-16L1 complex as the E3-like enzyme then 

conjugate LC3 family members to phosphatidylethanolamine (PE) on the surface of nascent 

autophagosomes [108]. 

The autophagic system also requires proteins known as autophagy receptors, which increase the 

selectivity of the autophagic process by facilitating the engulfment of certain cargoes by the growing 

autophagosomes [109]. The most widely studied autophagy receptors are p62/SQSTM-1 

(sequestosome-1) and BRCA1 [107, 110]. The autophagy receptor proteins share a common domain 

organization containing both a ubiquitin-binding domain (UBD) and an LC3-interacting region, 

which allow them to act as bridging molecules recognizing the degradation signal on the autophagic 

cargo on the one hand, and binding LC3 on the growing autophagosomal membrane on the other.  
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During autophagosome maturation, the cytosolic phagosomes are directed, through microtubules and 

actin filaments, to the perinuclear region, where lysosomes are mainly localized. Subsequently, the 

fusion of the autophagosome with the lysosome is mediated by several complexes including tethering 

factors, Rab GTPases, and SNAP receptors complexes (SNAREs). While SNAREs proteins are 

mainly localized on the autophagosomal membrane, Rab GTPases (RAB2 and RAB21) are located 

on the lysosomal membrane [111]. This fusion results in the formation of the autolysosome, the 

structure designated to the degradation and the recycling of autophagosome contents [104]. 

In the context of cancer, the role of autophagy is still controversial since, unlike apoptotic or necrotic 

programmed cell death, autophagy can play a context-dependent tumor-suppressive or pro-survival 

role [104, 112].  

Autophagy is active in many types of cancer and is required for cancer progression by promoting 

survival during nutrient stress and allowing the recycling of cell components to support a transformed 

phenotype [113–115]. Moreover, autophagy can help tumor cells to overcome the cytotoxicity of 

chemotherapy [116, 117]. In this regard, several autophagy-targeting drugs are under study in 

ongoing clinical trials [118]. For instance, chloroquine (CQ) and hydroxychloroquine (HCQ), are 

well known anti-malarial drugs with the ability to inhibit lysosome acidification, resulting in the block 

of the last steps of autophagy in cancer cells [119]. These drugs revealed their efficacy in vivo and 

several clinical trials are ongoing to identify efficient chemotherapy combinations to use with these 

Figure 7 Schematic representation of the autophagic process. (Adapted from Cicchini et 

al., 2015) 
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compounds [120]. Nowadays, many other drugs are under investigation, including ULK inhibitors 

(ULK100 and ULK101) [121], and ATG inhibitors (UAMC-2526and LV-320) [118]. However, 

further pre-clinical studies must be conducted to define their clinical efficacy. 

Conversely, several studies reported that autophagy induction in cancer cells can improve 

chemotherapy, especially in chemoresistant cells. In this context, the administration of the mTOR 

inhibitor rapamycin had been proven to possibly reverse resistance to trastuzumab in patients with 

HER2+ metastatic breast cancers [122, 123]. Moreover, the mTOR inhibitor AZD8055 was reported 

to display antitumor effects in colon cancer cells [124]. These results support the existence of 

autophagy-dependent cell death, a type of cell death that requires autophagic machinery and is 

characterized by the absence of chromatin condensation and caspase activation, and the presence of 

several autophagosomes with wide degradation of cytoplasmic material [72, 125].  

 

1.3.3.1 Lysosomes and cancer 

Lysosomes are conservative organelles with an indispensable role in cellular degradation and the 

recycling of macromolecules whose role, in cancer cells, extends far beyond cellular catabolism and 

includes a variety of cellular pathways, such as proliferation, metastatic potential, and drug resistance 

[126].   

The vacuolar ATPase (V-ATPase) pumps protons into the lysosome to create an acidic compartment 

(pH approximately 4.5–5.0) enclosed by a phospholipid membrane where nearly 60 acid hydrolases, 

including lipases, peptidases, nucleases, glycosidases, phosphatases, and sulfatases, cooperate to 

regulate nutrient homeostasis, extracellular matrix degradation, cell signaling regulation and cell 

death [127].  

In cancer, cell transformation increases the requirement for new biomass production, and lysosome 

function to provide energy and metabolic precursors for macromolecular synthesis. Recycling of 

intracellular materials or uptake and catabolism of extracellular proteins and lipids can act as sources 

of these nutrients [128]. Since lysosomes display the ability to regulate metabolic homeostasis by 

perceiving energy, growth factor signals, and nutrients availability, they are considered an important 

hub for different signaling pathways. The main pathways are represented by the mammalian target of 

rapamycin complex 1 (mTORC1) and AMPK, key regulators of autophagy and catabolic and anabolic 

processes [129].  

In addition to recycling macromolecules, lysosomes are capable of fusing and catabolizing entire 

organelles. This process is best described for mitochondria via a distinct process termed mitophagy 
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[130], but the emerging roles played by the lysosome in nucleophagy, pexophagy, and other forms of 

organellophagy are also of potential therapeutic interest [131]. 

Lysosome function is also involved in membrane remodeling to allow cell shape changes that enable 

invasion through the basement membrane. Exocytosis of lysosome-derived heparanase and 

cathepsins affects cell shape and favors the degradation of extracellular matrix to prime local invasion 

[132]. 

The lysosome is more than just the recycling center for the cell, and an improved understanding of 

how this organelle participates in tumor initiation and progression will be an exciting area of biology 

that could lead to the development of new therapeutic strategies for cancer (Figure 8).  

Indeed, the activation of lysosomes during malignant transformation does not come without a price. 

The cancer-associated changes in lysosomal composition result in reduced lysosomal membrane 

stability, thereby sensitizing cells to lysosome-dependent cell death, a mechanism of regulated cell 

death that results in the permeabilization of the lysosomal membrane [133, 134]. At the biochemical 

level, this mechanism of cell death starts with lysosomal membrane permeabilization (LMP) and 

results in the release of lysosomal content, including cathepsins, into the cytoplasm; once released, 

Figure 8 Key elements involved in lysosomal biology in cancer. In red: factors that can play roles 

in cancer progression. In green: various drugs that target the lysosome or cellular components link to 

the lysosome that can destabilize the organelle leading to LMP. In yellow: activation of cell death 

pathways. (aa amino acid, ASM acid sphingomyelinase, Baf Bafilomycin A 1, CQ chloroquine, ECM 

extracellular matrix, HSP70 70-kDa heat shock proteins, LAMP lysosome associated membrane 

glycoproteins, LMP lysosomal membrane permeabilization, mTORC1 mammalian target of 

rapamycin complex 1/mechanistic target of rapamycin, PES phenylethynesulfonamide, QN 

quinacrine, ROS reactive oxygen species, TFEB transcription factor EB, V-ATPase Vacuolar-type 

H+ATPase) (Adapted from Fennelly et al., 2017) 
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cathepsins can lead to apoptosis induction, by proteolytic regulation of factors such as BAX, BID, 

XIAP, BCL2 [72, 135]. 

The molecular pathways upstream LMP are still unclear. Some studies reported a link between 

lysosomes and mitochondria suggesting that LMP occurs after MOMP and considering LMP as a 

consequence of intrinsic apoptosis [136], whereas other findings demonstrate that LMP arises before 

mitochondrial permeabilization, through the pore-forming activity of BAX at the lysosomal 

membrane [137, 138]. Despite these observations, lysosomal-dependent cell death does not 

necessarily rely on caspase and MOMP and it does not result always in apoptosis [139, 140]. 

Oxidative stress seems to play an important role in LMP mainly by the production of H2O2 and 

hydroxyl radicals that cause lipid peroxidation of the lysosomal membrane, and activation of 

lysosomal Ca2+ channels [141, 142].  Moreover, physiological lysosomotropic agents including 

sphingosine and calpains were reported to induce LMP. These molecules display an affinity for the 

acidic lysosomal environment of the lysosome in which they accumulate, till they reach a limit 

concentration that destabilizes the membrane of the lysosome [143]. 

From cancer therapy, lysosomal-dependent cell death represents a good strategy in targeting 

apoptotic-resistant tumor cells [133, 144]. Many studies report that neoplastic cells are usually more 

sensitive to lysosomotropic agents and compounds causing lysosomal cell death because of their 

enlarged lysosomal system [145]. Moreover, it was demonstrated that targeting of lysosome during 

chemotherapy could result in improved outcomes, since it reduces chemotherapy agents accumulation 

in the lysosomes, resulting in more effective action in the cytosol and the nucleus [146, 147]. 

 

1.3.4 Endoplasmic reticulum stress induction 

The endoplasmic reticulum (ER) is a multifunctional organelle, involved in Ca2+ storage or release, 

lipid biosynthesis and protein folding [148]. Alterations in ER homeostasis, caused by Ca2+ depletion, 

hypoxia, oxidative damage, hypoglycemia, and viral infections, trigger the accumulation of unfolded 

or misfolded proteins that results in the so-called ER stress, which induces the activation of the 

unfolded protein response (UPR) an adaptive response that leads to the reduction of unfolded proteins 

to favor cell functions recovery [149–152]. 

Although the UPR is an essential adaptive mechanism that promotes cell survival, in case of severe 

or irreparable damage, prolonged UPR switches from pro-survival signaling to pro-death signaling 

leading to activation of intrinsic apoptotic and autophagy pathways [153].  

UPR is mediated by three different signaling cascades associated with three distinct ER stress sensors: 

protein kinase R (PKR)-like ER kinase (PERK), inositol requiring enzyme 1 (IRE1), and activating 
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transcription factor 6 (ATF6) [154] (Figure 9). In physiological conditions, these sensors are inactive 

and bind the chaperone GRP78 (also known as BiP). On the contrary, when the stress condition 

directly affects the ER, the inhibitory function of GRP78 is titrated down by the accumulation of 

unfolded or misfolded proteins inside the ER lumen. This event results in the activation of 

serine/threonine kinase activity of PERK that phosphorylates eukaryotic initiation factor 2 alpha 

(EIF2α) and nuclear factor E2-related factor 2 (NRF2) resulting in the upregulation of chaperones 

factors involved in oxidative stress response and inhibition of protein synthesis [154, 155].  

Additionally, the stimulation of IRE1 results in its dimerization and auto-transphosphorylation and 

results in the splicing of the unspliced X box-binding protein 1 (uXBP1), in the active transcription 

factor, spliced XBP1 (sXBP1) involved in the transcriptional response aiming to alleviate the 

intracellular misfolded protein burden [149]. These events result in the transcription of genes 

encoding proteins involved in protein folding and oxidative stress response, but also ER-associated 

degradation (ERAD), a crucial event for cell survival under ER stress conditions [156, 157]. 

Lastly, ATF6 activation, mediated by the dissociation from BiP/GRP78, upregulates genes associated 

with ERAD and mediates their binding to XBP1s. These events are essential for the transcription of 

ER quality control genes including ERdj3/HEDJ, EDEM, ERdj4, RAMP4 and p58IPK [158].  

When the primary stimulus responsible for ER stress is prolonged or excessive, the adaptive 

mechanisms of the UPR fail to restore physiological homeostasis, and cell death is usually induced 

by inhibition of cell cycle and apoptosis induction [153]. The mechanism behind this switch is still 

Figure 9 Representation of the UPR. Three different signaling 

cascades associated to three distinct ER stress sensors (Adapted from 

Iurlaro et al., 2015) 
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not well defined, although experimental evidence suggests that, at least in part, it’s mediated by the 

sustained activation of eIF2a, and by the expression of ATF4 and C/EBP homologous protein CHOP 

[151]. CHOP is the main effector of the pro-death side of the UPR as it upregulates some pro-

apoptotic proteins and regulates the intrinsic apoptotic pathway by inducing autophagy and caspase 

4 activation [153]. Finally, IRE1, with its kinase activity, can induce ER collapse activating JNK and 

P38 MAPK pathways [152] (Figure 10). 

In the context of cancer, ER stress has always been considered a double-edged sword due to its ability 

to induce both cell survival and cell death [159]. Since high proliferative cancers are frequently 

exposed to alteration in protein homeostasis and ER stress, the upregulation of UPR is required for 

the maintenance of proteostasis to sustain tumor growth. However, under chronic and severe ER 

stress, cancer cells can fail to restore ER homeostasis via UPR, with the consequent switch from pro-

survival to pro-death conditions [160]. In this context, studies are ongoing to determine the 

mechanisms involved in ER-stress dependent cell death [161, 162].  

Nowadays it is possible to identify two ways of cell death under chronic ER-stress: the UPR 

dependent and the UPR independent. As previously mentioned, UPR dependent cell death is mainly 

mediated by CHOP, induced via the IRE1α / Apoptotic-Signaling Kinase-1 (ASK1) / JNK and p38 

MAPKs pathway and through PERK/ eIF2α. CHOP targets are GADD34 (growth arrest and DNA 

damage-inducible 34), the cell surface death receptor of the TNFR family DR5 (TRAIL Receptor-2), 

and Ero1α (endoplasmic reticulum oxidoreductase-1), which hyperoxidizes the ER leading to cell 

death [161]. Moreover, Ero1α can activate inositol triphosphate receptor (IP3R), stimulation that 

promotes extreme Ca2+ release from the ER to the mitochondria resulting in cell death [163].  

Conversely, UPR-independent ER stress-related cell death could be driven by different causes, which 

include alterations in Ca2+ dynamics [164, 165]. Acute release of Ca2+ from ER was reported as a 

leading mechanism of Ca2+ - mediated mitochondrial cell death [166]. Additionally, it was reported 

that Bak and Bax play a crucial role in ER Ca2+-mediated apoptosis. A temporary overexpression of 

Bax can induce Ca2+ release from the ER, resulting in a mitochondrial overload of Ca2+ and 

cytochrome c release [167]. 

Furthermore, UPR independent ER stress cell death could also be driven by ER-membrane 

reorganization. With the help of informatic tools researchers identified that this stress response was 

caused by a different variety of drugs including antimalarials, antipsychotics and antihistamines 

[168]. 

Altogether, these pieces of evidence suggest that both the inhibition and the enhancement of the ER 

stress and UPR could show potential in the identification of an alternative regimen in targeting 

chemoresistant cancer cells. 
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1.3.5 Intracellular Ca2+ dynamics in cancer  

Ca2+ homeostasis is of pivotal interest for the cell, reflecting the central importance of Ca2+ as a 

second messenger, regulating a variety of cellular processes such as cell motility, metabolism, gene 

transcription, cell proliferation, division and differentiation, and cell death [169]. Therefore, several 

transport systems including the sarco/endoplasmic Ca2+-ATPases (SERCAs), the plasma membrane 

Ca2+-ATPases (PMCAs) and the Na+/Ca2+ exchangers (NCX, NCKX) strictly maintain the 

electrochemical Ca2+ gradients between cytosol (~100 nM), extracellular environment (> 1 mM) and 

intracellular Ca2+ stores of the sarco/endoplasmic reticulum (> 100 μM) [170]. 

Modification in the [Ca2+] cyt can occur not only after the opening of plasma membrane channels such 

as voltage-operated channels, receptor-operated channels (NMDA and ATP receptors), and second 

messenger-operated channels, but also through the opening of inositol-1,4,5-trisphosphate receptors 

(IP3Rs) downstream receptor tyrosine kinases (RTKs) or G-protein coupled receptors (GPCRs), 

coupled to phospholipase C (PLC) activation [169]. Furthermore, internal Ca2+ release can be also 

modulated by other second messengers such as cyclic ADP ribose (cADPR), nicotinic acid adenine 

dinucleotide phosphate (NAADP), sphingosine-1-phosphate (S1P) and Ca2+ itself [171]. [Ca2+] cyt 

Figure 10 Schematic representation of ER stress-induced cell death (Adapted 

from Iurlaro et al., 2015) 
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variations can occur as global constant or transient increases, or tightly localized such as Ca2+ sparks, 

or can arise as oscillations or waves. These modifications are decoded by the cells and result in the 

regulation of several processes [172].  

Numerous studies reported that deregulation in Ca2+ homeostasis mechanisms can lead to the 

development of several diseases including cancer [169, 170, 172].  Cancer cells are usually 

characterized by aberrant intracellular Ca2+ levels or Ca2+ regulating protein expression. In 

proliferating cells, mitogenic growth signals lead to the activation of Ca2+ effectors, including 

calmodulin-dependent protein kinases II (CaMKII), calcineurin and protein kinase C (PKC), resulting 

in cell cycle progression [173]. Moreover, these mechanisms are further sustained in cancer cells by 

the activation of Ca2+-dependent transcription factors, including c-Jun, c-Myc and c-Fos, that lead to 

the hypertrophic growth through the expression of cyclin D, cyclin E and cyclin-dependent kinases, 

that regulates the phases G1 and G1/S of the cell cycle [174].  

Furthermore, several studies demonstrate that a modified regulation of [Ca2+]cyt during cancer 

progression could result in apoptosis resistance [175]. In fact, tumor cells can display mechanisms of 

cell adaptation also in a condition of reduced [Ca2+]ER by modulating he expression of crucial 

components of the store-operated calcium entry (SOCE) response including ORAI1 and STIM1, but 

also by downregulating the expression or the activation of IP3R, resulting in decreased Ca2+-signal 

transmission in the ER-mitochondrial contact sites and blocked MTP-driven cell death [173]. 

Altogether these findings highlight the fact that disrupting intracellular Ca2+ dynamics could represent 

an effective strategy in targeting tumor cells [175, 176]. In this context, many drugs already in use 

for cancer treatment target these mechanisms (Table 2) and several studies are ongoing for the 

identification of new compounds that can alter the regulation of [Ca2+] cyt during cancer progression 

[169]. 
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Table 2 Summary of the principal compounds targeting Ca2+ channels/transporters/pumps in cancer 

(Adapted from Patergnani et al., 2020) 
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1.4 Drug repurposing: psychotropic drugs and cancer  

Despite increasing efforts in research and development, successful cancer drug development has 

proven difficult. The average period from preclinical experiments to completed regulatory review 

vary between 10-17 years [177], whereas estimates of capitalized costs range from 161 to 1800 

million dollars per drug [178] (Figure 12). 

Currently, there are more than 10.000 clinical trials investigating drug interventions in cancer 

registered at www.clinicaltrials.gov. However, the approval rate of cancer drugs entering phase I 

trials is very low [179]. The ‘classical’ process of drug development is estimated to have an 

approximately 90% attrition rate, meaning that 90% of those drug candidates that have been 

extensively studied in preclinical models, lack toxicity in rodents and large animals and are well 

tolerated by humans do not reach drug approval stage [180–182] 

For oncology drugs that receive marketing approval, prices have risen steeply in recent years, 

increasing significantly the burden on health economies worldwide. Whereas basic drug discovery 

for a large part receives public funding and financial support from nonprofit organizations, late-stage 

development is mostly driven by the pharmaceutical industry and venture capital. Given the profit-

based incentives of this funding model, drugs that ultimately receive clinical approval are highly-

priced to cover overall investments − both for failed and successful drug candidates [183] (Figure 

12).  

For all these reasons, drug repurposing (also known as repositioning) has received in the last years 

increasing interest as an alternative strategy to de novo drug synthesis, and it consists of using an 

already approved drug for a different application than the one for what it was originally approved. 

Drug repurposing grants the possibility to develop a new therapeutic option in a shorter time, because 

of the great quantity of data already available about safety and toxicity, even though a new clinical 

trial to approve repositioning is required [184]. 

By now, many common drugs have been repositioned in cancer either for prevention or therapy 

Examples are aspirin, statins and metformin [185–187].  And many others are under investigation for 

their repurposing including cardiovascular drugs such as beta-blockers, digoxin, antipsychotic drugs 

(chlorpromazine, fluspirilene and penfluridol), tricyclic antidepressant, the anti-epilepsy valproic acid 

and thalidomide [184, 188].  

Among these categories, antipsychotic drugs are proving to be a good option in repurposing due to 

safety and long clinical use [189]. It has long been suggested that individuals affected by psychosis, 

schizophrenia or bipolar disturbs exhibit reduced tumor incidences after receiving long-term drug 

treatment compared to the general population [190–193] and neuroleptics have been suggested as 
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possible mediators of this effect [192]. This reduction has been found in men for smoking-related 

cancers [194], prostate [194, 195] and CRC [194, 196]. 

Many antipsychotic drugs have demonstrated in vitro antitumoral activities [184] (Table 3). In this 

context, the antipsychotic chlopromazine (CPZ) that has been reported to be associated with a lower 

risk of prostate cancer in men [197], upregulates cyclin-dependent kinase inhibitor p21 and 

autophagic flux by inhibiting Akt/mTOR pathway in glioblastoma cell lines [198, 199]and induces 

apoptosis via TP53 upregulation in CRC [200]. Besides, penfluridol was found to inhibits pancreatic 

tumor increasing autophagy [201]. 

Furthermore, recent data have revealed that antipsychotic drugs display a potential value in 

eradicating not only the bulk of the tumor but also CSCs. For example, pimozide was reported to 

reduce cell proliferation and to promote CSCs differentiation in many cancer types [202]. CSCs 

differentiation represents a new therapeutic strategy whose objective is to force CSCs to differentiate 

into cell types lacking self-renewal, malignancy, and proliferation ability, thus preventing tumor 

relapse, and making them more susceptible to present-day chemotherapy [58, 203]. 

 

Figure 11 Pipelines representing de novo drug discovery versus drug repurposing (Adapted from 

Deotarse et al., 2015) 
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Table 3 Psychiatric drugs with potential anti-neoplastic effects (Adapted from Huang et al., 2018) 
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2. Aim of the study 
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In this Ph.D. dissertation, I intended to describe the identification of psychotropic drugs with 

cytotoxic activity in several cancer cell lines and to elucidate their pharmacological properties 

supporting their possible applications in cancer treatment. 

This first part of the research project led to the identification of a group of drugs displaying cationic 

amphiphilic properties (CADs) reducing tumor cell viability at clinically relevant concentrations, by 

impairing both mitochondrial and lysosomal function. These data resulted in one publication that is 

attached at the end of this thesis; also, the results related to this first part can be found in section 4.1 

Psychotropic drugs show anticancer activity by disrupting mitochondrial and lysosomal function of 

this thesis. 

Besides, I included in this dissertation our ongoing investigation which aims to dissect the molecular 

mechanism through which spiperone, one of the psychotropic drugs identified through the 

aforementioned screening, proves cytotoxicity in colorectal cancer cells. These unpublished data can 

be found in section 4.2 Effective cytotoxic activity of spiperone on human colorectal cancer cells. 

Supplementary material is listed in paragraph 8 Supplementary material. 
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3. Materials and methods 
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3.1 Cell culture 

The human differentiated cell line: HCT116, SW620, MCF7, MDA-MB-231, U87 and U251 cell 

lines were purchased from the American Type Culture Collection (ATCC), while human dermal 

fibroblast cell line (HDF) was a kind gift from Dr. Barbara Azzimonti (Department of Health 

Sciences, University of Piemonte Orientale). MCF7, HCT1116, HDF, vAT-MSC and U251cells were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco), whereas HCT8, SW620 and MDA-

MB-213 cells were maintained in RPMI-1620 (Gibco).  U87 cells were cultured in Minimum 

Essential Medium (MEM, Gibco). All culture media were supplemented with 10% Fetal Bovine 

Serum (FBS, Euroclone) and 1% antibiotics-antimycotics (Penicillin, Streptomicyn, Amphotericyn, 

Sigma). 

Peripheral blood mononuclear cells (PBMCs) were isolated from human blood by ficoll density 

gradient centrifugation and were stimulated for 24 hours with 10 μmol/L phytoheamoagglutin (PHA, 

Sigma) in RPMI-1620 (Gibco) supplemented with 10% heat inactivated FBS (Euroclone). 

Subsequently, cells were cultured for 48 hours in fresh RPMI containing interleukin 2 (IL-2, 

Peprotech). Lastly, cells were harvested and plated for viability assay. 

Human CRC stem cell lines (CRC-SCs) 511, DA13, CCO9 and Me52 were kindly provided by Prof. 

Giorgio Stassi (Department of Surgical, Oncological and Stomatological Sciences, University of 

Palermo). These cell lines were cultured in suspension as colonospheres in stem cell medium 

(DMEM/F12, Gibco) supplemented with EGF (10 μg/ml, Peprotech) and FGF (20 μg /ml, Peprotech), 

B27 and N2 (Gibco), 1 mmol/L nicotinamide (Sigma Aldrich) and 1% antibiotics-antimycotics 

(Penicillin, Streptomicyn, Amphotericyn, Sigma). All the cell lines were cultured at controlled 

temperature and atmosphere in a humidified incubator (37°C, 5% CO2). 

 

3.2 Psychotropic drugs 

Psychotropic drugs used in the screening were purchased from Cayman Chemicals, Sigma, TCI 

Chemicals and Selleck Chemicals. List of drugs used:  aripiprazole, brexpiprazole, cetirizine, 

diphenhydramine, droperidol, ebastine, fluoxetine, fluspirilene, haloperidol, iloperidone, ketanserin, 

metoclopramide, nefazodone, paliperidone, penfluridol, pimozide, pipamperone, R59022, R59949, 

risperidone, ritanserin, spiperone, trazodone, urapidil, way-100135 and ziprasidone. All drugs were 

dissolved in DMSO at a 10 mmol/L concentration and stored, in small aliquots at -20°C. 
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3.3 MTT (Thiazolyl blue tetrazolium bromide) viability assay 

For each cell line, 1,000 cells/well were plated (only for PBMCs 10,000 cells/well were plated) in a 

volume of 100 µL in 96 wells plate. Cells were treated with different concentration of drug and 

incubated for 72 hours. For each concentration of drug, the same concentration of vehicle (DMSO) 

was used as control. MTT (Thiazolyl blue tetrazolium bromide, Sigma) 0,5 mg/ml was, then, added 

to each well and incubated for 4 hours at 37°C and 5% CO2. Crystals were dissolved using 100 µl of 

acidic isopropanol (4 mmol/L HCl) and the absorbance (570 nm and 650 nm) was read at the 

spectrophotometer (Victor, PerkinElmer). 

To perform viability assay with biogenic amines 4,000 cells/well from MCF7 and HCT116 were 

plated in 96 wells plate. Cells were treated with different doses of serotonin, dopamine and histamine 

(Cayman Chemicals) in DMEM 0% FBS and viability was evaluated after 24- and 48-hours treatment 

by MTT assay. 

 

3.4 Viability rescue assay 

To perform viability rescue experiments, 1,500 cells were plated in 96 wells plate and treated with 

spiperone, nefazodone, fluoxetine, fluspirilene, ebastine, pimozide or  penfluridol in combination 

with vehicle alone (DMSO), or with 5 μmol/L carbobenzoxy-valyl-alanyl-aspartyl- [O-

methyl]fluoromethylketone (zVAD-fmk, AdipoGen), 2.5 mmol/L 3-methyladenine (3-MA, 

AdipoGen), 5 mmol/L N-[[(2S,3S)-3-[(propylamino) arbonyl]-2-oxiranyl]carbonyl]-L-isoleucyl-L-

proline, methyl ester (CA-074 me, Cayman Chemical), 5 μmol/L cyclosporin A (Cayman Chemical) 

and 5 μmol/L N-Acetyl-L-cysteine (NAC, Sigma Aldrich), 1 μmol/L BAPTA-AM, 5 μmol/L U-

73122 . MTT viability assay was performed after 16 or 72 h as previously described, except for NAC 

where, prior to MTT adding, medium was removed, and each well was washed with 100 μL of 

phosphate buffered saline.  

For biogenic amines viability rescue, 1,500 MCF7 cells were seeded in 96 wells plate and treated 

with IC50 concentration of the following drugs: spiperone, nefazodone, fluoxetine, fluspirilene, 

ebastine, pimozide, penfluridol in combination with vehicle (DMSO) or 5 μmol/L dopamine, 

serotonin, or histamine. MTT viability assay was performed as described before after 24, 48, and 72 

hours. 
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3.5 Apoptosis assay 

50,000 MCF7, HCT116, SW620 cells and 100,000 CRC-SCs were plated in 24 wells plate and treated 

for different time points with 10 μmol/L fluoxetine, ebastine, pimozide, fluspirilene, nefazodone, 5 

μmol/L penfluridol and different concentrations of spiperone ranging from 2.5 to 20 μmol/L. 

Cells were, then, stained following manufacturer’s instruction (AdipoGen). Briefly, cells were 

incubated for 10 minutes at room temperature with annexin binding buffer (10 mmol/L 

HEPES/NaOH, pH 7.4, 140 mmol/L NaCl, 2.5 mmol/L CaCl2) containing Annexin V-FITC. Lastly, 

cells were washed and resuspended in annexin binding buffer. Propidium iodide was added to all the 

samples 5 minutes before FACS analysis (Attune Nxt, Flow Cytometer, Thermo Fisher Scientific). 

Data were analyzed with FlowJo, LLC. 

 

3.6 Migration assay 

Migration assay was performed using Culture‐Insert 2 well in μ‐dish (ibidi GmbH, Martinsried, 

Germany) as previously described [204]. Briefly 30,000 HCT116 cells and 25,000 MCF7 cells were 

plated in each side of the insert in 24 well plate. After 24 hours, inserts were removed, and cells were 

treated with respective psychotropic drug (5 μmol/L) or DMSO (0.05%) in complete medium. Images 

were acquired at 0 hours and 24 hours after treatment, with phase contrast microscope and analyzed 

through ImageJ software (NIH, USA). Data were shown as % of closure rate relative to time 0. 

 

3.7 Vacuolization assay 

25,000 cells were plated in 48 wells plate and then treated with fluoxetine, ebastine, penfluridol, 

pimozide, fluspirilene, spiperone, nefazodone at the concentration of 5 μmol/L and rapamycin (10 

μmol/L). After 2 hours treatment one well from each treatment was treated with bafilomycin A1 (50 

nmol/L) or 3-MA (1 mmol/L). Pictures were acquired with a phase contrast microscope 4 and 6 hours 

after treatment, images were analyzed by ImageJ software. Analysis shows percentage of 

vacuolization rate for each treatment. 

 

3.8 Mitochondrial membrane potential analysis  

20,000 cells were plated in 48 wells plate and treated with 5 μmol/L fluoxetine, ebastine, fluspirilene, 

nefazodone penfluridol, pimozide, and 5 - 10 μmol/L spiperone. DMSO 0.05% was used as negative 
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control. After treatment, cells were stained with 10 μg/ml JC-1 dye (Adipogen) in PBS for 30 minutes 

in the dark at 37°C. FCCP (Cayman chemicals) was added for 15 minutes after the staining as positive 

control. Signals were acquired with a fluorescence microscope (FLoid Cell Imaging Station, Life 

Technology) and images were analyzed by ImageJ software calculating red/green fluorescence ratio.  

 

3.9 Lysotracker assay 

20,000 cells were plated in 48 wells plate and treated with 5 μmol/L fluoxetine, ebastine, fluspirilene, 

nefazodone penfluridol, pimozide, spiperone or 10 μmol/L rapamycin for 16 hours. After the 

treatment medium was removed and cells were stained with Lysotracker Deep Red (Invitrogen, 50 

nmol/L) and Hoechst 33342 (5 μg/ml) for nuclei staining, in the dark at 37°C for 30 minutes. Signals 

were acquired with a fluorescence microscope (FLoid Cell Imaging Station, Life Technology). 

Lysotracker red signal/blue nuclei signal was analyzed by ImageJ software. 

 

3.10 Phospholipidosis assay  

20,000 cells were plated in 48 wells plate and treated with 5 μmol/L ebastine, fluoxetine, fluspirilene, 

nefazodone penfluridol, pimozide, 5 or 10 μmol/L spiperone or 10 μmol/L rapamycin and stained 

with 1X LipidTox green (Thermo Fisher Scientific) for 16 hours. 

Subsequently, nuclei were stained using Hoechst 33342 (5 μg/ml) and plate was incubated for 30 

minutes in the dark at 37°C. Afterwards, cells were washed with PBS and fixed with 

paraformaldehyde 4% for 15 minutes in the dark. Signals were acquired with a fluorescence 

microscope (FLoid Cell Imaging Station, Life Technology) and images were analyzed by ImageJ 

software. 

 

3.11 Western blotting 

150,000 cells were plated in 6 wells plate and treated with 5 μmol/L ebastine, fluoxetine, fluspirilene, 

nefazodone penfluridol, pimozide, spiperone for 16 hours.  

For experiment of autophagic flux two conditions were carried out for each drug: drug alone and 

cotreatment of drug and chloroquine 50 μmol/L.   

For spiperone signaling experiment, 300,000 cells/well of HCT116 were plated in six wells plate and 

starved overnight with DMEM without FBS. The day after, cells were stimulated with spiperone for 
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5, 30 and 60 minutes keeping one well unstimulated as control; a second experiment was then 

performed in the same conditions with a 30 minutes pretreatment with PLC inhibitor U-73122 10 

μmol/L. 

To evaluate spiperone induction of ER stress HCT116 were plated 300000 cells/well in six well plate. 

The day after, cells were treated with spiperone 10 μmol/L for 2, 4 and 8 hours. One well was kept 

unstimulated (negative control) and 2 were treated with DTT 1 or 2 mM as positive control of ER 

stress. 

After treatments, whole cell lysates were prepared using RIPA lysis buffer (25 mmol/L Hepes pH 8, 

135 mmol/L NaCl, 5 mmol/L EDTA, 1 mmol/L EGTA, 1 mmol/L ZnCl2, 50 mmol/L NaF, 1% 

Nonidet P40, 10% glycerol) with protease inhibitors (AEBSF, aprotinin, bestatin, E-64, EDTA, 

leupeptin, Sigma-Aldrich) and orthovanadate. Lysates were then kept on a wheel for 20 minutes at 

4°C and after centrifuged at 12,500 g for 15 minutes. Proteins contained in the samples were collected 

and quantified using Pierce BCA protein assay kit (Thermo Fisher Scientific). Successively, proteins 

were denatured at 95°C for 5 minutes in presence of 2% Sodium Dodecyl Sulfate (SDS), 150 mmol/L 

dithiothreitol (DTT) and 0,01% bromophenol blue. Electrophoresis of the samples was performed 

using 6%, 8 %, 10 % or 15% polyacrylamide gels and proteins were transferred from the gel to a 

PolyVinylidene DiFluoride membrane (PVDF, Amersham). Lastly, the membrane was saturated 

using 3% Bovine Serum Albumin (BSA, Sigma) in TBS/Tween-20 0.1% [Tris Buffered Saline 1X 

containing Trizma base 50 mmol/L, NaCl 120 mmol/L, 0,1% Polyethylene glycol sorbitan 

monolaurate (Tween-20)] for 1 hour and incubated with primary antibody dissolved in the same 

buffer with sodium azide 0,01%. Primary antibodies were anti-LC3B (Thermo Scientific), anti-P-

P70S6K T389 (Cell Signaling Technology), P70S6K (Cell Signaling Technology), anti-P-S6 

S235/236 (Cell Signaling Technology), anti-S6 (Cell Signaling Technology) anti-P-AMPKα T172 

(Cell Signaling Technology), anti-AMPK (Cell Signaling Technology), anti-GAPDH (Cell Signaling 

Technology) P-(S)-PKC substrate, anti-P-Akt S473 (Cell Signaling Technologies, CST), anti-P-Akt 

T308 (Cell Signaling Technologies, CST), anti-Akt (Cell Signaling Technologies, CST), anti-P-

p44/42 MAPK (Erk1/2) T202/Y204 (Cell Signaling Technologies, CST), anti-p44/42 MAPK (Erk 

1/2) , anti-P-P38 MAPK T180/Y182 (Cell Signaling Technologies, CST), anti-P38 MAPK (Cell 

Signaling Technologies, CST), anti-vinculin , anti-P-eIF2a (Santa Cruz), anti-P-JNK (Santa Cruz), 

anti-JNK (Santa Cruz) and anti-Lamin A/C (BD Biosciences). The day after, primary antibody was 

removed, and the membrane was washed with TBS-Tween-20 0,1% for 15 minutes 3 times and then 

incubated with horseradish peroxidase conjugated secondary anti-mouse or anti-rabbit antibody 

(Perkin Elmer Life Science) diluted 1:3000 in TBS-Tween-20 0,1% for 45 minutes. After washing, 
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reading of the membrane was performed using ECL Western Lightning Chemiluminescence Reagent 

Plus (Perkin Elmer Life Science) and images acquired with the Chemidoc Touch (Bio-Rad). 

 

3.12 Immunofluorescence microscopy analysis 

50,000 cells/well were seeded onto glass coverslips and treated with 5 µmol/L fluoxetine, ebastine, 

penfluridol, pimozide, fluspirilene, nefazodone and 5 - 10 µmol/L spiperone. After the treatment, 

cells were washed with PBS and fixed with PFA 4% for 10 minutes at room temperature and washed 

with PBS. Then cells were permeabilized incubating with cold HEPES-Triton X-100 (20 mM HEPES 

pH 7.4, 300 mM sucrose, 50 mM NaCl, 3 mM MgCl2, 0,5% Triton X-100) for 5 minutes at 4°C. 

Cells were washed with 0,2% PBS-BSA and saturated using 2% PBS-BSA for 15 minutes before 

placing primary antibodies. 

Antibodies used in these experiments were anti-mTOR (Cell Signaling Technology), anti-Galectin-1 

(Santa Cruz Biotechnology), anti-LAMP1 (Santa Cruz Biotechnology), anti-Cathepsin B (Cell 

Signaling Technology). For MitoTracker assay instead of antibody, MitoTracker dye 100 nmol/L was 

used.  Cells were incubated with primary antibodies for 30 minutes, then washed, saturated with 2% 

PBS-BSA and incubated with secondary antibodies conjugated with Alexa Fluor-488, -536 

(Invitrogen) and DAPI for 30 minutes. 

After the incubation, glasses were mounted on glass slides using Mowiol (20% Mowiol 4-88, 2,5% 

DABCO in PBS, pH 7.4). Images were acquired at confocal microscope Leica TCS SP8 or 

fluorescence microscope DM5500B (Leica) and analyzed using ImageJ software. 

 

3.13 Compounds chemical analysis 

The properties of the compounds (LogP and basic pKa) were investigated using ACD/ LAB software. 

As reported in the publication of Muehlbacher [205] there is not a clear CADs classification based of 

chemical properties. We decided to apply the same parameters based on LogP and pKa applied in the 

Muehlbacher’s manuscript. Compounds were considered CADs when LogP > 3, for the amphiphilic 

characteristics, and a PKa > 7.4 for the cationic characteristics. 
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3.14 Cell cycle analysis 

Cell cycle analysis was performed through DNA content measurement. 60,000 HCT116 cells/well 

were plated in a 12-well plate and starved for 16 hours (DMEM without FBS). After starvation, cells 

were treated with spiperone for 24 and 48 hours in DMEM supplemented with 10% FBS. 

Subsequently, cells were harvested and fixed with 70% ethanol for 30 minutes. Then, cells were 

treated with 20 μg/ml RNAse A (Sigma) for 45 minutes at 37°C. Finally, cells were stained with PI 

(50 μg/ml, sigma) and the fluorescence was acquired through cytofluorimeter (Attune Nxt, Flow 

Cytometer, Thermo Fisher Scientific). Data analysis was performed using FlowJo, LLC software. 

 

3.15 Intracellular Ca2+ concentration measurements 

To investigate Ca2+ concentration, 300,000 HCT116 cells were harvested for each condition and 

resuspended in 300 μl of Krebs-Ringer Buffer (KRB) containing 135 mmol/L NaCl, 5 mmol/L KCl, 

0,4 mmol/L KH2PO4, 1 mmol/L MgSO4, 20 mmol/L HEPES, 2 mmol/L CaCl2. The samples were 

incubated with Fluo 4-AM (Molecular Probes, Invitrogen) 2,5 μmol/L at room temperature, in the 

dark for 30 minutes, then washed with KRB and re-incubated in 2 mmol/L CaCl2 KRB at room 

temperature other 30 minutes. 

After incubation all the samples were resuspended in 2 mmol/L CaCl2 KRB, in 2 mmol/L EGTA 

KRB or 2 mmol/L EGTA KRB with10 μmol/L U-73122 (Sigma) or U-73443 (Caymann chemicals) 

for 10 minutes, depending on the experimental conditions. 

Finally, fluorescence emission was acquired for each sample by flow cytometry (FACScalibur, BD 

Biosciences). Data analysis was performed using FlowJo, LLC software. 

The same protocol was used to investigate intracellular Ca2+ concentration through microscopy 

analysis, but cells were stained in adherent condition and fixed with PFA 1%. 

 

3.16 RNA extraction and real time PCR  

In order to perform RNA extraction 300,000 HCT116 and CC09 cells were plated in each well and 

treated with different concentrations of spiperone (2,5 μmol/L, 5 μmol/L, 10 μmol/L) for 24 hours. 

After the treatment, RNA was extracted using phenol/chlorophorm method (RNAzol, Sigma Aldrich) 

and isopropanol precipitation following manufacturer’s instructions. Then, precipitated RNA was 

washed with 75% ice-cold ethanol and resuspended in 30 μl of water.  
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RNA samples were quantified at NanoDrop 2000 and then reverse transcribed into cDNA using 

recombinant moloney murine leukemia virus reverse transcriptase (MultiScribe Reverse Trascriptase, 

Biorad) and iScript cDNA Synthesis kit (Biorad).  

The genes analyzed by real time PCR using SsoAdvanced Universal SYBR Green Supermix kit (Bio 

rad) were: GRP78, c-MYC, CDKN1A, CHOP, BIRC5, AXIN2 and GUSB as control gene (Table 

4). Relative quantification was determined using the ΔΔCt algorithm [206]. 

 

Table 4 Oligo sequences for the genes investigated 

Gene  Forward  Reverse  

GRP78  5’ GTT CTT GCC GTT CAA GGT GG 3’  5’ TGG TAC AGT AAC AAC TGC ATG 3’  

c-MYC  5’ GAT TCT CTG CTC TCC TCG AC 3’  5’ ACC CTC TTG GCA GCA GGA TA 3’  

CHOP  5’CAT CAC CAC ACC TGA AAG CA3’  5’TCA GCT GCC ATC TCT GCA G 3’  

BIRC5  5’ACC GCA TCT CTA CAT TCA AG 3’  5’CTT TCT TCG CAG TTT CCT C3’  

AXIN2  5’AGA GCA GCT CAG CAA AAA GG 3’  5’CCT TCA TAC ATC GGG AGC AC3’  

GUSB  5’ ATC GCC ATC AAC AAC ACA 3’  5’ CTT GGG ATA CTT GGA GGT G 3’  

 

3.17 Analysis of XBP1 splicing variants 

To evaluate XBP1 alternative splicing cDNA was used as a template for PCR amplification using 

XBP1 specific primers (forward: 5’ TTA CGA GAG AAA ACT CAT GGC C 3’; reverse: 5’ GGG 

TCC AAG TTG TCC AGA ATG C 3’). PCR was performed using Taq polymerase (Biorad), the 

products were separated by agarose gel electrophoresis and visualized with GelGreen™ (Invitrogen). 

Results were acquired at ChemiDoc touch (Biorad). 

 

3.18 Extreme limiting dilution assay 

CC09 cells were plated at a number of 3 and 1 cell/well in an ultra-low attachment 96-well plate in 

50 μL of complete stem cell medium, and then treated with 50 μL of medium containing 1 μmol/L 

spiperone or same concentration of DMSO. Tumor sphere growth was monitored using a phase 

contrast microscope, and picture were acquired 15 days after plating. Data were analyzed using the 

free ELDA software (http://bioinf.wehi.edu.au/software/elda/). 
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3.19 Statistical analysis 

Prism 8.0 software was used for statistical analysis (GraphPad software Inc., San Diego, CA). In 

viability assays, IC50 was determined using a variable slope model referring to the values obtained 

during the assay; a semi-logarithmic dose-response curve was created.  

Statistical significance was analyzed using Student’s t-test with p < 0.05 as the criterion of 

significance when two groups were compared. Analysis of contingency tables were performed using 

Prism 8.0 software (GraphPad software Inc., San Diego, CA) and statistical significance was 

evaluated using Fisher exact test with p <0.05.  

In section 4.2 of Results, data were analyzed by using mixed one-way ANOVA with Dunett’s multiple 

comparisons correction using GraphPad PRISM 8.0 software. While for apoptosis assay and cell 

cycle analysis, statistical significance was evaluated through mixed two-way ANOVA with Dunett’s 

multiple comparisons using GraphPad PRISM 8.0 software. Error bars are described in Figure 

legends as ± SD. A single, double, triple and four asterisks denote their significance of a p-value 

≤0.05, ≤0.01, ≤0.001 and ≤0.0001 respectively in all experiments. 
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4. Results 
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4.1 Psychotropic drugs show anticancer activity by disrupting 

mitochondrial and lysosomal function  

 

4.1.2 The antitumoral activity of psychotropic drugs transcends the 

conventional therapeutic classes and tumor type 

To identify compounds with potential, clinically relevant, anticancer activity we first assessed their 

effect on six different tumor types represented by two CRC (HCT116 and SW620), two breast cancer 

(BC, MCF7 and MDA-MB-231) and two glioblastoma (GB; U87MG and U251) cell lines. Cells were 

treated for 72h with scalar doses of drugs ranging from 10 to 160 μmol/L. The screened drugs (N=26) 

were represented by antipsychotics (n=14), antidepressant (n=2), antihistamines (n=3) and three 

compounds used in scientific research with reported serotonin receptors antagonistic activity (Figure 

13; Figure S1; Table 5). For drugs that induced more than 50% cell viability reduction at a 

concentration lower that 100 μmol/L, in a dose-dependent manner, the IC50 values were calculated 

(Figure S2; Table 5). 

The most effective drugs in all cell lines tested belonged to all three pharmacological classes 

investigated (antipsychotics, antidepressants, and antihistamines) (Figure 13; Figure S1; Figure S2; 

Table 5). The six most potent drugs induced more than 50% cell viability reduction at a concentration 

lower that 10 μmol/L (penfluridol, ebastine), 15 μmol/L (pimozide and fluoxetine) or 25 μmol/L 

(fluspirilene and nefazodone) in all cell lines tested; spiperone and brexpiprazole proved to be highly 

effective in both CRC and BC (with IC50 <10 μmol/L and 10 <IC50< 20 μmol/L, respectively) 

whereas their cytotoxicity was negligible in GB. A tendency for the diphenylbutylpiperidines 

pimozide, fluspirilene and penfluridol to be more effective in BC and CRC than in GB was also 

observed (Table 5). Aripiprazole and ritanserin demonstrated a moderate cytotoxicity, whereas 

droperidol, haloperidol and iloperidone showed a weak effect only in a fraction of cell lines. Notably, 

in the lower range of concentrations, some compounds induced a moderate increase in cell viability 

reflecting cell proliferation: haloperidol in all cell lines tested; ritanserin and the two structurally 

related R59022 and R5949 in CRC cell lines only, whereas iloperidone in MCF7 and U87MG cell 

lines (Figure S1). 

Eight compounds, represented by the antihistamines cetirizine and diphenhydramine, the 

antipsychotics paliperidone, pipamperone and risperidone, the antihypertensives ketanserin and 

urapidil, and the antiemetic metoclopramide showed no cytotoxicity, or caused a reduction of at least 

50% of cell viability only at very high concentration (>60 μmol/L) (Figure S1, Table 5). A few of 
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these drugs i.e. urapidil, cetirizine, diphenhydramine and metoclopramide even induced cell growth 

in one or more cell lines tested (Figure S1). These results clearly suggest that the cytotoxic effect of 

these compounds in the micromolar range is not associated with their conventional pharmacological 

properties and clinical use.  

 

 

 

  

Figure 12 Anticancer activity of psychotropic drugs. Two CRC (HCT116 and SW620), 2 

BC (MCF7 and MDA-MB-231) and 2 GB (U87MG and U251) cell lines were treated for 72 

h with scalar doses of drugs ranging from 10 to 160 μmol/L. The screened drugs included 

antipsychotics, antidepressant, antihistamines, and three compounds used in scientific 

research with reported serotonin receptors antagonistic activity (R59949, R59022; WAY-

100135). Viabilities were assessed by MTT assay. Data are presented as mean IC50 ± 

standard error of the mean (SEM) from three-five independent experiments, each performed 

in quadruplicate. IC50, drug concentration reducing by 50% viability compared to control. 

Histograms show drugs with IC50 < 100 μmol/L 
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4.1.3 Cytotoxicity of psychotropic drugs is not mediated by biogenic 

amine receptors 

At therapeutic concentrations, the main pharmacological targets of these compounds are biogenic 

amines receptors [207, 208]. The precise role of biogenic amines such as histamine, dopamine and 

serotonin in cancer is still debated [209–211]. To test biogenic amines in our cell lines modes, we 

treated HCT116 and MCF7 cells with a wide range of concentrations of serotonin, dopamine and 

histamine and evaluated viabilities after 24 and 48 hours. In our assay conditions we observed only a 

mild positive effect on cell proliferation even at very high doses (Figure 14). Long term treatment of 

MCF7 cells with the strongest cytotoxic compounds penfluridol, ebastine, pimozide or fluoxetine at 

Table 5 Summary of psychotropic drugs IC50 value measured by viability assay in different cancer 

cell lines 
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clinically significant concentrations determined only a modest increase of drugs efficacy, with IC50 

values that remained above 3 μmol/L even after 6 days of treatment (Figure S3).   

 

Notably, neither dopamine, nor serotonin and histamine, added to the culture media, were able to 

rescue the cytotoxic effect of these drugs (Figure 15).  

These data further support the hypothesis that these compounds affect tumor cell viability through a 

mechanism that is not mediated by the major neuroreceptor systems implicated in their psychotropic 

effects. 

Figure 13 Effect of biogenic amines on HCT116 and MCF7 cell viability. MCF7 and HCT116 cells 

were grown for 24 or 48 h in serum-free medium in presence of viable cells vs control. Data show mean 

± SD of one representative experiment out of three independent experiments performed in quadruplicate. 
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Figure 14 The cytotoxic effect of psychotropic drugs is not reduced by co-treatment with biogenic amines. 

MCF7 cells were treated with psychotropic drugs alone (at a concentration equivalent to IC50) or in presence 

of 5 μmol/L biogenic amines serotonin, dopamine or histamine. Viabilities were assessed by MTT assay at 

different time points and presented as fold change relative to control cells treated with vehicle only. Data show 

mean  ± SD of one representative experiment out of three independent experiments performed in 

quadruplicate. 
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4.1.4 Psychotropic drugs affect tumor cell migration 

To determine the effect of psychotropic drugs on the motility of cancer cells, we assessed MCF7 and 

HCT116 cells migration by the wound‐healing assay (Figure 16). All active drugs caused a reduction 

in the motility of MCF7 cells with the strongest effects observed with penfluridol, spiperone, urapidil 

and brexpiprazole (Figure 16A). On the contrary, the migration rate of HCT116 cells was 

unexpectedly increased by the cytotoxic compounds ebastine and penfluridol, as well as by different 

other compounds such as urapidil, diphenhydramine, ritanserin, R59022 and R59949; spiperone, and 

to a lesser extent, ketanserin and trazodone reduced HCT116 cells motility (Figure 16B). Overall, 

these results show that: i) the impact of the different compounds on the migration rate is not strictly 

associated with their cytotoxic effect or their conventional pharmacological properties and clinical 

use; ii) the effect of the compounds on cell motility is cell line specific. 
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Figure 15 Effect of psychotropic drugs on cancer cells migration. Cell motility was evaluated by wound 

healing assay. MCF7 (A) and HCT116 (B) cells were plated in 2 wells IBIDI chambers. After removing 

the insert, cells were treated with drugs (5µmol/L) in DMEM 10% FBS. The widths of wounds were 

measured at 0 and 24 hours. Graphs show the closure rate. Data are presented as mean ± SD from three 

independent experiments, each performed in triplicate. *, Student’s T-test p < 0.05; **, Student’s T-test p 

< 0.01; ***, Student’s T-test p < 0.001. Representative images of MCF7 and HCT116 wounds after 

treatment with penfluridol, spiperone and DMSO (C) 
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4.1.5 Psychotropic drugs with significant antitumoral activity display 

a cationic amphiphilic structure 

Cationic amphiphilic drugs (CADs) are defined as chemical compounds with the ability to passively 

diffuse through lipid bilayers stacking in acid organelles such as lysosomes [212]. These compounds 

contain both a hydrophobic and a hydrophilic domain; the hydrophobic domain contains one or more 

aromatic rings whereas the hydrophilic part contains a functional amine group that can be ionized 

[213]. CADs family comprises a broad spectrum of compound classes, including dozens of approved 

drugs that are used to treat a wide range of diseases including allergies, heart diseases, and psychiatric 

disorders [214, 215]. Since the antitumoral activity of compounds investigated in this study is not 

apparently related to their conventional pharmacological properties and clinical use, we investigated 

CADs properties of psychotropic drugs used in our screening evaluating their chemical structure, 

logP and PKa in comparison to the well-known CADs compounds amiodarone, chlorpromazine and 

chloroquine (Table 6) [216, 217]. Since there is not a clear CADs classification based on chemical 

properties, we set LogP and pKa cut as suggested by Muehlbacher [205]. Overall, 14 psychotropic 

drugs out of 26 were classified as CADs. Five out of seven most cytotoxic drugs in MCF7 (IC50<15 

μmol/L) were CADs, whereas spiperone and nefazodone, were excluded from CAD classification 

just because of a LogP or pKa value below the selected cut off (Figure S4, Table 6). Since CADs 

were represented also among drugs without cytotoxic activity (e.g. haloperidol, iloperidone or 

ritanserin), cationic amphiphilic characteristics contribute strongly, but are not sufficient to confer 

significant antitumoral activity to psychotropic compounds.  

 

Table 6 List of psychotropic drugs value of LogP and Pka 

 

 

  

Compound Log P* Basic pKa Compound Log P* Basic pKa 

amiodarone 6.94 8.47 nefazodone 3,55 7,09 

chloropromazine 4.89 9.20 paliperidone 3,08 8,76 

chloroquine 4.81 10.32 penfluridol 7,53 8,96 

aripiprazole 4,68 7,767 pimozide 5,86 8,83 

brexpiprazole 4,72 8,4 pipamperone 2,59 8,39 

cetirizine 3,15 7,42 R59022 5,04 7,95 

diphenhydramine 3,35 8,87 R59949 5,94 7,73 

droperidol 3,68 6,75 risperidone 3,59 8,76 

ebastine 7,22 8,43 ritanserin 5,48 8 

fluoxetine 4,44 9,8 spiperone 3,22 8,28 

fluspirilene 5,31 9,31 trazodone 2,36 7,09 

Haloperidol 4,43 8,05 urapidil 0,72 7,81 

Iloperidone 4,83 7,91 WAY-100135 3,52 8,12 

ketanserin 2,42 7,29 ziprasidone 3,81 7,09 

metoclopramide 2 9,04 
* Log10 (partition coefficient) Partition 

Coefficient, P = [organic]/[aqueous] 
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4.1.6 Psychotropic drugs cause mitochondrial membrane 

depolarization 

CADs can readily pass through phospholipids bilayers, particularly through membranes with a large 

transmembrane potential such as the mitochondrial inner membrane. They readily accumulate in the 

mitochondrial matrix, causing mitochondrial membrane depolarization [215, 217, 218]. Therefore, 

we evaluated the alteration in mitochondrial membrane potential (Δψm) as a function of drugs 

treatment, using the lipophilic cationic dye JC-1 [219]. MCF7 cells were treated, for 16 h, with 5 

μmol/L of each drug or with FCCP, used as positive control. A significant reduction in Δψm was 

observed after treatment with ebastine, fluoxetine, penfluridol, pimozide, nefazodone and 

fluspirilene, but not with spiperone (Figure 17).  

 

Figure 16 Psychotropic drugs induce mitochondrial membrane depolarization. Mitochondrial membrane 

potential depolarization was evaluated by JC-1 staining after overnight treatment with psychotropic 

compounds (5 μmol/L) in MCF7 cells. Pictures were acquired by fluorescence microscopy. Representative 

images of cell treated with the negative control DMSO, FCCP positive control, ebastine, fluoxetine, 

fluspirilene, nefazodone, penfluridol, pimozide, and spiperone (A). Histogram showing quantification of 

red/green fluorescent ratio as fold change relative to control (B). Data are presented as mean ± SD from three 

independent experiments, each performed in triplicate. **, Student’s T-test p < 0.01; ***, Student’s T-test p < 

0.001.  
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4.1.7 Psychotropics drugs induce vacuolization and increase acidic 

compartments 

CADs are known to concentrate in acidic cell compartments because the retro-diffusion of the 

protonated form is inefficient (mechanism known as ion-trapping or pH partitioning). If sufficiently 

intense, this sequestration results in the osmotic formation of numerous large, fluid-filled vacuoles 

already after short term exposure to drugs [216]. These molecules are collectively referred as 

lysosomotropic agents, for their propensity to concentrate into lysosomes [220]. To test the hypothesis 

that cytotoxic psychotropic drugs concentrate in MCF7 cells by this mechanism, MCF7 were cultured 

in the presence of 10% FBS and treated with drugs alone or in the presence of the V-ATPase inhibitor 

bafilomycin A1 or class III PI3K inhibitor 3-MA (Figure 18, Figure S5). Fluoxetine induced a strong 

vacuolar morphology already 6 hours after treatment as previously reported [216] (Figure S5A); a 

less prominent, but still significant increase of vacuolar structures was also observed after treatment 

with fluspirilene, ebastine, pimozide, penfluridol and nefazodone, whereas increase of vacuoles was 

not observed with spiperone (Figure S5). The mTOR inhibitor rapamycin used as a positive control 

of autophagy induced a mild vacuolar morphology.  

In the presence of bafilomycin A1, a significant reduction of vacuoles formation was observed with 

fluoxetine, ebastine, fluspirilene, pimozide, and nefazodone, suggesting that these drugs require an 

acidic environment to accumulate and induce vesicles formation; on the contrary, a higher number of 

vesicles was observed after treatment with penfluridol and spiperone, suggesting that these drugs do 

not require pre-existing acidic compartments to induce vacuolization although they can cause the 

formation of autophagosome structures that accumulate after inhibition of autophagosome-lysosome 

fusion and autolysosome acidification by bafilomycin A1 (Figure 18). The autophagosome nature of 

vacuoles induced by all these compounds was suggested the reduction of the number of vesicles in 

the presence the inhibitor of class III PI3K, 3-MA (Figure 18).  

The nature of the vacuoles induced by psychotropic drugs was further investigated by staining MCF7 

cells with the LysoTracker dye, which is a highly soluble small molecule that is retained in acidic 

subcellular compartments, such as late endosomes and lysosomes, whose presence is an indirect 

indication for autophagic activity [221]. In agreement with data described above, LysoTracker dye 

staining clearly show a strong increase of acidic compartments after long-term treatment with all drug 

tested consistent with increased autophagosome-lysosome acidic structures (Figure 19; Figure S6).  
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Figure 17 Vacuolar structures formation after treatment of MCF7 cells with psychotropic drugs. 

Morphological alterations associated with psychotropic drugs treatment in MCF7 were investigated after 4 h 

exposure by phase contrast microscopy. Representative images of cells treated with the negative control 

DMSO, ebastine, fluoxetine, fluspirilene, nefazodone, penfluridol, pimozide and spiperone and rapamycin 

alone or with bafilomycin A1 and 3-MA (A). Histogram showing quantification of vacuoles as fold change 

relative to control (B). Data are expressed as the mean ± SD of a representative experiment out of three 

independent experiments performed in triplicate. *p < 0.05; **, Student’s T-test p < 0.01; ***, Student’s T-

test p < 0.001. 
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Figure 18 Psychotropic drugs induce acidic compartment formation perturbing lysosomal and 

autophagic functioning. Effects of psychotropic drugs on intracellular acidic compartments were evaluated 

by Lysotracker Deep Red staining after 6 and 16 h of treatment. Nuclei were stained using Hoechst 33342. 

Pictures were acquired by fluorescence microscopy (magnification: 20×). Representative images of cells 

treated with DMSO, negative control, rapamycin, positive control, ebastine, fluoxetine, fluspirilene, 

nefazodone, penfluridol, pimozide, and spiperone (A). Graphs showing quantification of red lysotracker 

staining/blue nuclei staining ratio as fold change relative to negative control (B). Data are expressed as the 

mean ± SD of a representative experiment out of three independent experiments performed in triplicate. *p < 

0.05; **, Student’s T-test p < 0.01; ***, Student’s T-test p < 0.001; ****p < 0.0001. 

  



58 
 

4.1.8 Psychotropic drugs alter autophagy flux by affecting mTOR 

pathway 

In addition to autophagy, the increase of acidic structures could reflect reduced turnover in the 

autophagosomal compartment caused by impaired autophagosome-lysosome fusion and/or lysosomal 

function. In order to clarify this issue, we investigated mTOR pathway and AMPK, the main 

regulators of autophagy (Figure 20). Starvation, a strong inducer of autophagy was used as positive 

control. Western blot analysis showed a strong reduction of P70S6K T389 phosphorylation in cells 

treated with penfluridol and spiperone whereas a mild reduction of this phosphorylation was observed 

in cells treated with ebastine and fluoxetine; on the contrary, treatment with fluspirilene, nefazodone 

and pimozide showed no effect on P70S6K phosphorylation (Figure 20A,B). Phosphorylation in 

serine 235/236 of ribosomal protein S6, was strongly reduced in cell treated with penfluridol, and 

mildly reduced with all other drugs (Figure 20A,C). Those drugs likely downregulate other pathways 

upstream other kinases that phosphorylate this position, including PKC, PKA, RSK1 and death 

associated protein kinase (DAPK) [222]. A mild increase of AMPK phosphorylation in the activation 

site T172, comparable to that induced by starvation, was observed after treatment with penfluridol 

and spiperone, whereas it was unaffected or slightly reduced after treatment with all other compounds 

(Figure 20A,D).  

The conversion of the cytosolic LC3B form, LC3B-I, into the faster migrating, 

phosphatidylethanolamine-conjugated, LC3B-II form, a marker of autophagy induction [223] was 

strongly enhanced in cells treated with penfluridol and spiperone and a lower but significant increase 

was also observed in cells treated with pimozide (Figure 20E,F).   

Notably, treatment with both penfluridol and spiperone also caused a partial delocalization of mTOR 

from the lysosomal membrane, supporting the hypothesis that these drugs can induce mTORC1 

downregulation and activation of autophagy (Figure 20G, Figure S7).  
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Figure 19 Effect of psychotropic drugs on mTOR and AMPK pathways and autophagic flux. Western 

blot analysis of MCF7 cells after 16 h treatment with psychotropic drugs. Lysates were analyzed for p AMPKa 

T172, AMPKa, p-P70S6K T389, P70S6K, P-S6 S235/236, S6, LC3B, and GAPDH (A). Histogram showing 

quantification of P70S6K (B), S6 (C) and AMPK (D) phosphorylation normalized on total protein P70S6K, 

S6 and AMPKa, respectively. WB (E) and histogram (F) showing the relative expression of LC3B II/I upon 

chloroquine treatment. Densitometric analyses mean  ± SD of 3 independent experiments performed in 

triplicate. * Student’s T-test p < 0.05 **, Student’s T-test p < 0.01; ***, Student’s T-test p < 0.001, ****p < 

0.0001. Delocalization of mTOR from the lysosomal membrane was evaluated in MCF7 after 16 h treatment 

with psychotropic drugs. mTOR was stained using mTOR primary antibody and Alexa Fluor 488 secondary 

antibody (green). Lysosomes were stained using LAMP1 primary antibody and Alexa Fluor 536 secondary 

antibody (red). Representative images of DMSO, negative control, ebastine, penfluridol, and spiperone (G).  
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4.1.9 Psychotropic drugs cause lysosomal disruption 

CADs can accumulate into lysosomes and impair lysosomal enzymatic activities [214, 224]. 

Lysosomes are a major site of cellular phospholipid metabolism and the hallmark of drug-induced 

lysosomal impairment is accumulation of phospholipids [212, 225]. It has also been shown that some 

antipsychotic and antidepressant drugs extensively accumulate in lysosomes and it is thought that this 

accumulation could contribute to the mechanism of action of these agents through inhibition of acid 

sphingomyelinase and phospholipases [205, 226]. Therefore, we investigated whether the antitumoral 

activity of psychotropic drugs was associated with lysosomal impairment by incubating cells in the 

presence of phospholipids conjugated to fluorescent dye. After incubation for 24 h with LipidTOX, 

MCF7 cells treated with ebastine, fluspirilene, fluoxetine, pimozide and penfluridol showed a strong 

increase of phospholipids aggregates; on the contrary, this phenotype was not observed after 

treatment with spiperone, nefazodone and with the inducer of autophagy rapamycin (Figure 21A,B). 

Drugs with cationic amphiphilic properties accumulating into lysosomes can also induce LMP. This 

phenomenon leads to the release of lysosomal enzymes inside the cytoplasm and possibly cell death 

[144]. Galectin-1 is a small protein normally located in the cytoplasm and in the nucleus, that 

accumulates and forms complexes to the lysosomal membrane in case of LMP and rupture [227]. To 

evaluate LMP and lysosomal damage in response to psychotropic drug treatment we investigated 

galectin-1 complex formation by immunofluorescence. All the drugs tested, apart from nefazodone, 

induced the formation of galectin-1 complexes and possibly a damage to the lysosomal membranes 

(Figure 22 A,B) 
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Figure 20 Treatment with psychotropic drugs induces phospholipidosis in MCF7 cells. Accumulation of 

phospholipids in MCF7 cell line was evaluated after 16 h treatment with drugs using LipidTox green staining. 

Nuclei were stained using Hoechst 33342. Pictures were acquired by fluorescence microscopy (magnification: 

20×). Representative images of cells treated with DMSO, negative control, ebastine, fluoxetine, fluspirilene, 

nefazodone, penfluridol, pimozide, spiperone, and rapamycin (A). Histogram showing quantification of Green 

LipidTox staining/blue nuclei staining ratio as fold change relative to control (B). Data are presented as mean 

± SD from three independent experiments, each performed in triplicate. ***, Student’s T-test p < 0.001. 
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Figure 21 Treatment with psychotropic drugs induced formation of galectin-1 complexes. Formation of 

galectin-1 complexes in MCF7 after 16 h treatment with psychotropic drugs was observed by fluorescence 

microscopy (magnification: 63X). Galectin-1 was stained with anti galectin-1 primary antibody and Alexa 

Fluor 563 secondary antibody. Nuclei were stained using DAPI. Representative images showing cells treated 

with psychotropic drugs: DMSO, ebastine, fluoxetine, fluspirilene, nefazodone, penfluridol, pimozide, and 

spiperone (A). Histogram showing the number of cells presenting galectin-1 complexes/total number of cells 

ratio as fold change relative to control (B) Data are presented as mean ± SD from three independent 

experiments, each performed in triplicate. ****p < 0.0001.  
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4.1.10 Psychotropic drugs induce different types of cell death 

To assess if apoptosis is involved in psychotropic drugs-induced cell death we performed PI/Annexin 

V staining in MCF7 cells. FACS analysis at different time points showed an increase in necrosis cells 

with all the drugs but a significant induction of apoptosis after 48 hours of treatment with the sole 

spiperone (Figure S11). These data were further confirmed by viability rescue experiments with a 

pan caspase inhibitor zVAD-fmk. As shown in Figure 23A, zVAD-fmk significantly rescued cell 

death only in cells treated with spiperone, whereas it was ineffective with the other drugs. 

Since apoptosis is not the primary mechanism of death elicited by cytotoxic psychotropic drugs, 

except for spiperone, we investigated the role of autophagy by treating cells with the autophagy 

inhibitor 3-MA [228]. As shown in Figure 23B, 3-MA co-treatment significantly rescued cell 

viability in cells treated with rapamycin and in cells treated with spiperone and pimozide. Conversely, 

3-MA enhanced penfluridol cytotoxicity, whereas it did not show any effect in combination with 

ebastine, fluoxetine, nefazodone and fluspirilene. However, since it was reported that in particular 

conditions 3-MA could induce autophagy [228] we performed western blot analysis to investigate the 

conversion of the cytosolic LC3 I to II form in MCF7 cells treated with spiperone and penfluridol 

alone or in 

combination with 3-MA (Figure S9). Our data indicate that in our experimental set-up 3-MA does 

not induce autophagy, on the contrary it is effective in suppressing LC3 II conversion. 

To further investigate the mechanism of the observed cytotoxicity we assessed whether inhibition of 

lysosomal cathepsins B and L rescued cell viability in MCF7 cells, for this purpose we performed 

experiments with the inhibitor CA-074 me [229].  As displayed in Figure 23C CA-074 me 

significantly rescued cell death induced by ebastine, penfluridol, pimozide and spiperone, while a 

mild but not significant effect was observed in cells co-treated with fluoxetine. Additionally, in order 

to clarify if oxidative stress was involved in psychotropic drugs-induced cell death, we cotreated 

MCF7 cells with the antioxidant NAC, however no significant effect was observed in terms of 

viability rescue (Figure 23D). With cyclosporin A, an inhibitor of the mitochondrial permeability 

transition pore (mPTP), an additive cytotoxic effect was observed with all drugs tested (Figure 23E). 

Cyclosporin A has been reported to be a broad-spectrum multidrug resistance modulator [230] and 

this activity possibly induces psychotropic drugs retention resulting in a boost of cytotoxicity. 
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Figure 22 Effect of co-treatment of psychotropic drugs and the pan-caspase inhibitor zVAD-fmk, the 

autophagy inhibitor 3-MA, the cathepsin inhibitor CA-074 me, the antioxidant NAC or the inhibitor of 

mitochondrial membrane depolarization cyclosporin A. MCF7 cells were treated for 72 h with vehicle or 

psychotropic drugs (all 10 μmol/L except penfluridol, 5 μmol/L) alone, or in combination with zVAD-fmk, 5 

μmol/L (A), 3-MA, 2.5 mmol/L (B), CA-075 me, 5 μmol/L (C), NAC, 5 mmol/L (D), cyclosporin A, 5 μmol/L 

(E) Data show mean ± SD of at least three independent experiments performed in triplicate. The graphs show 

cell viability as the percentage of viable cells vs. control. **, Student’s T-test p < 0.01; ***, Student’s T-test p 

< 0.001. 
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4.2 Effective cytotoxic activity of spiperone on human 

colorectal cancer cells 

4.2.1 Spiperone is cytotoxic for CRC cells and impairs the clonogenic 

potential of CRC-SC 

We have recently demonstrated the cytotoxic effect of the antipsychotic spiperone at clinically 

relevant concentrations (IC50 < 10 μmol/L) on breast and CRC cell lines [231]. In this part of the 

study we further confirm the antineoplastic activity of this compound on CRC cell lines and validate 

its specific activity against neoplastic cells. CRC cells exposed for 72 hours to spiperone showed a 

dose-dependent reduction of viability, with an IC50 <10 μmol/L. On the contrary, spiperone toxicity 

was negligible for non-neoplastic PBMC (IC50 > 30 μmol/L), primary human dermal fibroblasts 

(hDF1 IC50 > 90 μmol/L) and visceral adipose tissue-derived mesenchymal stem cells (vAT-MSC; 

IC50 > 80 μmol/L) (Table 7, Figure 24A). 

 

Table 7 Summary of spiperone IC50 value measured by viability assay in different cell lines 

Cell line 
IC50 72 hours spiperone 

Mean + SEM (μmol/L) 

HCT116 7.1 + 0.83 

SW620 7.2 + 1.2 

HCT8 6.5 + 0.48 

CC09 3.76 + 0.86 

DA13 8.4 + 0.94 

511 4.2 + 0.21 

Me59 3.5 + 0.42 

PBMC 32 + 4.7 

hDF1 98 + 9.7 

vAT-MSC 81 + 7.8 

 

We further investigated the efficacy of spiperone on CRC-SCs. Hence, viability assay was performed 

on four different CRC-SCs lines derived from human primary tumors and grown as colonospheres in 

stem cell medium (Figure 24B). A significant reduction in cell viability was measured after 72 hours 

of treatment with scalar doses of the drug, with an IC50 < 5 μmol/L in three out of four investigated 

cell lines (Table 7, Figure 24A).  



66 
 

The efficacy of spiperone against colonospheres, prompted us to assess the effect of the drug on the 

clonogenic potential of CSC-SCs.  The extreme limiting dilution assay (ELDA) demonstrated a 

significant reduction of colonosphere formation in CC09 cells treated with 1 μmol/L spiperone, with 

an estimated stem cell frequency reduction from 1/1.49 in controls to 1/3.16 in treated cells (Figure 

25). 
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Figure 23 Spiperone reduces cell viability of CRC cell lines. Nonlinear regression (dose-response curves) 

viability analysis of adherent CRC cells (HCT116, HCT8, SW62), CRC-SCs (CC09, DA13, 511, Me59) and 

non-neoplastic (hDF, PBMC, vAT-MSC) treated with scalar concentration of spiperone for 72 h (mean IC50 + 

SD, from 3 independent experiments) (A). Representative images of CC09 colonospheres control vs treated 

with spiperone for 48 hours (B) 

  



68 
 

 

 

 

Figure 24  In vitro analysis of CRC-SCs self-renewal using the limiting dilution assay. CRC-SCs were 

dissociated into single cells and plated into 96 wells plate. The number of wells containing spheres was then 

evaluated and micrographs are obtained to visualize sphere morphology. In the examples provided, sphere 

formation assays are performed on CRC-SCs populations to evaluate their stemness and clonogenic potential.  

Representative image of CC09 colonosphere (A). The amount of initially seeded cells (x-axis) is plotted against 

the log fraction of non-responders corresponding to wells without any detected spheres (y-axis). The slope of 

the line represents the log-active cell fraction (B). The number of lines of data entered (C), confidence intervals 

for 1/(stem cell frequency)(D). Goodness of fit tests (E).  
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4.2.2 Spiperone induces cell cycle arrest resulting in apoptotic cell 

death 

To investigate the mechanism of cell death induced by spiperone, propidium iodide (PI) / annexin V 

(Ax) staining was performed in different cell lines. We observed a significant, time- and dose-

dependent increase of apoptosis in HCT116 and SW620 cells treated with 5, 10 and 20 μmol/L 

spiperone (Figure 26A-D). Similarly, apoptosis was also observed in CRC-SCs with a two-fold 

increase of apoptotic cells after 24 hours exposure to 2.5 μmol/L and a progressive rise of late 

apoptotic/necrotic cells after exposure to increasing doses of drug (Figure 27A-D).  

We also performed a cell cycle analysis of HCT116 cells treated with spiperone. A significant 

increase of cells in the G1 phase, together with a decrease in the S/G2 phases, was observed to occur 

in a dose-dependent manner both after 24- and 48-hours treatments (Figure 28A,B). G1 phase arrest 

was associated with increased expression of CDKN1A both in HCT116 and CC09 cells treated for 

24 with spiperone (Figure 28C). Altogether these data suggest that spiperone is capable of causing 

G1-phase cell cycle arrest and apoptosis in CRC cells. 
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Figure 25 Spiperone induces apoptosis in CRC cells. Representative dot plots showing cell distribution of 

HCT116 (A) and SW620 (C) after annexin V/PI staining. Graph showing the analysis of the HCT116 (B) and 

SW620 (D) treated with different concentration of spiperone at different time points. Staurosporine was used 

as positive control. Cells populations are indicated as Ax+/ PI– (apoptotic), Ax+/PI+ (late apoptotic/necrotic), 

and Ax-/PI+ (necrotic). Data are presented as mean ± SD from three independent experiments, each performed 

in triplicate. *,p< 0.05; **, p< 0.01; ***, p<0.001; ****, p< 0.0001.  
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Figure 26 Spiperone induces apoptosis in CRC-SCs. Representative dot plot showing cell distribution of 

511 (A) and DA13 (C) CRC-SC lines after AX/PI staining in control cells and in cells treated with spiperone. 

Graphs showing the analysis of the 511 (B) and DA13 (D) cells treated with different concentration of 

spiperone for 24 hours. Cells populations are indicated as apoptotic (Ax+/PI–) and late apoptotic/necrotic 

(Ax+/PI+ and Ax-/PI+). Data are presented as mean ± SD from three independent experiments, each performed 

in triplicate. *, p<0.05; **, p< 0.01;  ****, p< 0.0001. 

 

Figure 27 Spiperone induces cell cycle arrest in G1 phase. Representative frequencies distributions of PI 

staining analyzed by flow cytometry (A). The number of cells in G0, G1, S and G2 phase of cell cycle after 24 

hours treatment with scalar doses of spiperone were quantified (B). Gene expression analysis of CDKN1A by 

RTQ-PCR, relative expressions were determined by the ΔΔCt method and normalized with the control gene 

GUSB (C). Data are presented as mean ± SD from three independent experiments, each performed in triplicate 

*p< 0.05; ***, p< 0.001; ****, p< 0.0001. 
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4.2.3 Spiperone does not induce lysosomal disruption in CRC cells   

We previously showed that spiperone induces lysosomal damage and cathepsin-mediated cell death 

in MCF7 cells (Figure 23). To evaluate the role of lysosomes in CRC cells death induced by 

spiperone, LipidTox green staining was performed on three different CRC cell lines. While treatment 

with 5 μmol/L fluoxetine caused a significant increase in LipidTox staining, treatment with 5 and 10 

μmol/L spiperone did not induce phospholipidosis in CRC cell lines, similarly to what previously 

observed in MCF7 cells (Figure 21; Figure 29A,B). We then investigated if spiperone treatment 

induced the release of lysosomal cysteine protease cathepsin B, in the cytosol. After a 16-hour 

treatment, cathepsin B strictly colocalized with LAMP-1, suggesting that spiperone toxicity is not 

related to lysosomal membrane damage and cathepsin B release (Figure 29C). 
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Figure 28 Treatment with spiperone does not induce phospholipidosis and lysosomal damage in CRC 

cells. Accumulation of phospholipids was evaluated after 16 hours treatment with drugs using LipidTox green 

staining. Nuclei were stained using Hoechst 33342. Pictures were acquired by fluorescence microscopy 

(magnification: 20x). Representative images of cells treated with DMSO, spiperone 5 and 10 μmol/L (A). 

Histogram showing quantification of Green LipidTox staining/blue nuclei staining ratio as fold change relative 

to control. Data are presented as mean ± SD from three independent experiments, each performed in triplicate. 

***, Student’s T-test p < 0.001 (B). Colocalization of cathepsin B and lysosomes was evaluated by using 

cathepsin B (green) and LAMP1 (red) antibodies after 16 hours treatment with spiperone. Nuclei were stained 

using DAPI. Pictures were acquired by confocal microscope Leica SP8 (magnification: 60x) (C). 
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4.2.4 Spiperone induces endoplasmic reticulum (ER) Ca2+ release 

resulting in a Ca 2+- mediated activation of PKC 

In 2009 Lu and collaborators performed a screening of 960 drugs in HEK297 cells and identified 

spiperone as a molecule effective in inhibiting the WNT signaling pathway [232]. Since their results 

suggested that the inhibitory effect of spiperone was likely associated with its capacity to induce 

intracellular Ca2+ mobilization, we evaluated intracellular Ca2+ kinetics in response to spiperone 

treatment in CRC cells. To this end, HCT116 cells were incubated with the FLUO 4-AM Ca2+ flux 

fluorescent probe and Ca2+ kinetic was analyzed by flow cytometry after stimulation with spiperone. 

In samples treated with 20 μmol/L spiperone we observed a strong increase of the fluorescence, 

indicative of an increase in cytoplasmatic Ca2+ concentration ([Ca2+]cyt) (Figure 30A). A similar 

increase of fluorescence was also observed in cells resuspended in KRB buffer containing the 

extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) (Figure 30B). These results 

indicate that, in CRC cells, spiperone enhances cytosolic Ca2+ levels by inducing its release from the 

intracellular storages. 

Ca2+ acts inside the cell as a ubiquitous second messenger and one of its first interacting protein is 

protein kinase C (PKC), a class of protein kinases involved in many cellular functions, including 

receptors desensitization and cell growth [233]. To understand if spiperone treatment affected PKCs 

activity, HCT116 cells were treated with 10 μmol/L spiperone for 5, 30 and 60 minutes and levels of 

PKC activation were examined. Western blot analysis shows the increase of PKC substrates 

phosphorylation already at 5 minutes after stimulation and which still remains elevated at 60 after 

treatment. 
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Figure 29 Spiperone induces ER Ca2+ release and Ca2+ mediated activation of PKCs. Representative 

graphs of FLUO4-am fluorescence over time with or without extracellular Ca2+ (A) Fluorescence peaks 

quantification, values were normalized on the basal signal (ΔF/Fo) (B). Western blot performed on HCT116 

treated with spiperone for 5, 30, 60 minutes. Lysates were analyzed for P-(S)-PKC substrates and vinculin (C) 

Data are presented as mean ± SD from three independent experiments, each performed in triplicate. 
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4.2.5 Spiperone-mediated calcium increase in CRC cells is a PLC 

dependent process 

The major Ca2+ store in eukaryotic cells is ER, which is characterized by the presence of various ion 

channels, among which inositol 1,4,5-trisphosphate receptors (IP3Rs) constitute a family widely 

expressed in nearly all cell types [234]. The major agonist of IP3R is inositol 1,4,5-trisphosphate (IP3), 

produced by phospholipase C (PLC), through the hydrolysis of phosphatidylinositol-4, 5-

bisphosphate (PIP2) into diacylglycerol (DAG) and IP3. 

To evaluate the possible role of PLC in spiperone signaling in CRC cells, we repeated intracellular 

Ca2+ measurement and western blot analysis by pre-treating cells with PLC inhibitor U-73122 and its 

inert analogue U-73433, at the concentration of 10 μmol/L for 30 minutes. Results showed that U-

73122 pretreatment abolished both the increase of [Ca2+]cyt and the PKC activation under spiperone 

treatment, whereas there was no difference between fluorescence detected in cells treated with U-

73433 and the control (Figure 31A,B). These data further confirm that in CRC spiperone-mediated 

Ca2+ release is PLC dependent (Figure 31C). 
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Figure 30 Spiperone-induced calcium increase is a PLC-dependent process. Representative graphs of 

FLUO4-am fluorescence over time in cells treated with spiperone, U73122 and U73433 (A). Graph showing 

the quantification of the fluorescence peaks detected in the experiment; ΔF/Fo, normalized fluorescence values 

(B). Western blot performed on HCT116 cells pretreated with U73122 and stimulated with spiperone at 

different times points. Lysates analyzed for P-(S)-PKC substrate and vinculin (C) Data are presented as mean 

± SD from three independent experiments, each performed in triplicate; ***, p< 0.001. 

  



78 
 

4.2.6 Spiperone induces ER stress 

ER is a multifunctional organelle and its function is not limited to Ca2+ storage or release, but it is 

also the place where lipid biosynthesis and protein folding take place [148]. Alteration in ER 

homeostasis causes the accumulation of unfolded or misfolded proteins that results in ER stress, 

which induces the activation of the unfolded protein response (UPR), an adaptive response that leads 

to the reduction of unfolded proteins in favor of cell function and viability [149].  

Considering the link between Ca2+ release and UPR [235], we investigated markers of UPR activation 

to evaluate if spiperone-mediated Ca2+ release could induce ER stress in CRC. 

Firstly, we investigated the splicing of XBP1 mRNA, involved in the transcriptional response aiming 

to alleviate the intracellular misfolded protein burden [149]. PCR analysis demonstrated the induction 

of the spliced form of XBP1 (XBP1s) already after 8 hours of treatment with 2.5 μmol/L of spiperone 

(Figure 32A). Spicing of XBP1 is a key event downstream IRE1α dimerization and auto-

transphosphorylation that triggers not only the transcription of genes involved in protein folding but 

also in ER-associated degradation (ERAD), a crucial event for cell survival under ER stress 

conditions [156]. 

Then we investigated the mRNA expression of the glucose-regulated protein, 78 kDa (GRP78), a 

chaperone induced in the first phase of ER stress, which sustains survival and restore normal cellular 

functions, the phosphorylation of eukaryotic initiation factor 2α (eIF2a), involved in protein 

translation regulation, and the phosphorylation of JNK and P38, involved in stress response and 

apoptosis induction. These signal transduction factors are commonly associated with cellular stress 

and are activated in response to the UPR-induced alarm [152]. 

RTQ-PCR analysis demonstrated a significant, dose-dependent increase of GRP78 mRNA after 24 

hours of treatment in HCT116 cells while a significant three-fold increase was observed in CC09 

stem cells treated with 5 μmol/L spiperone (Figure 32B). Western blot results showed strong 

phosphorylation of eIF2a, P38 and JNK already after 2 hours of exposure to spiperone (Figure 32C), 

confirming UPR activation upon spiperone treatment. 

When the adaptive mechanisms of the UPR fail to compensate, when the primary cause of ER stress 

is prolonged or excessive, cell death is induced, typically, by apoptosis [236]. For this reason, we 

investigated the mRNA expression of CHOP a major player in cell death induction downstream UPR 

[153]. In HCT116 cells we observed a 3-fold and 7-fold increase of CHOP mRNA after treatment 

with 5 and10 μmol/L spiperone, respectively (Figure 32D). Similarly, a 2.5-fold increase of CHOP 

mRNA was observed in CC09 cells treated, for 24 hours, with 5 μmol/L spiperone (Figure 32D). 

Altogether these data strongly suggest that spiperone induces ER stress and that this mechanism is 

likely to contribute to spiperone cytotoxicity in CRC cells. 
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Figure 31 Spiperone induces ER stress. XBP1 splicing analysis; uXBP1, unspliced; sXBP1, spliced form of 

XBP1 after different time points (A). Analysis of mRNA levels of GRP78 in HCT116 and CC09 at 24 hours, 

relative expressions were determined by the ΔΔCt method and normalized with the control gene GUSB. (B). 

Western blot analysis of HCT116 treated with spiperone for different times and with DTT (positive control). 

Lysates analyzed for P-eIF2a S51, P-P38 T180/Y182, P38, P-JNK T183/Y185 and Lamin A/C (C). Analysis 

of mRNA levels of GRP78 in HCT116 and CC09 at 24 hours, relative expressions were determined by the 

ΔΔCt method and normalized with the control gene GUSB (D). Data are presented as mean ± SD from three 

independent experiments, each performed in triplicate *p< 0.05, **** p< 0.0001.  
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4.2.7 Spiperone induces mitochondrial damage 

In the context of ER stress induced apoptosis, increasing evidence indicates that ER and mitochondria 

cooperate to induce cell death. It was reported that the tight functional network along with the 

controlled Ca2+ transfer between mitochondria and ER at the MAMs (mitochondria-associated ER 

membranes), is crucial in the control of cellular homeostasis and the decision of cell fate [237]. 

Besides, it is now well established that elevated and dysregulated increase of [Ca2+]cyt leads to 

mitochondrial Ca2+ overload resulting in a rapid increase in the IMM permeability and collapse of the 

proton gradient [238].  

Thus, we investigated whether spiperone was able to induce an increase of [Ca2+]cyt and mitochondrial 

Ca2+ concentration ([Ca2+]mit). For this purpose, HCT116 cells treated with 10 μmol/L spiperone were 

loaded with probe FLUO-4 am along with MitoTracker to monitor [Ca2+]mit at different time points. 

Our results show that spiperone causes the increase of [Ca2+]cyt in a time-dependent manner (Figure 

33A,B). Moreover, colocalization data indicate that long-term exposure to spiperone causes also a 

significant increase of [Ca2+]mit (Figure 33C). 

In order to determine if increased [Ca2+]mit was impairing mitochondrial functions, cells were treated 

with spiperone for 16 hours and then stained with JC-1 to evaluate mitochondrial membrane 

depolarization. From the pictures, it is possible to observe the reduction of nearly 50% of the red/green 

fluorescent ratio in spiperone-treated cells compared to controls, indicating a strong depolarization of 

the mitochondrial membrane in spiperone-treated cells (Figure 34A,B). 

To validate the hypothesis that mitochondrial depolarization is induced by mitochondrial Ca2+ 

overload, we performed JC-1 staining in cells treated with spiperone alone or in combination with the 

intracellular Ca2+ chelator, BAPTA-AM. Our data show that BAPTA-AM significantly rescues 

spiperone induced mitochondrial depolarization (Figure 34C). 

Altogether these results show that spiperone causes the disruption of intracellular Ca2+ homeostasis 

that compromises mitochondrial function. 
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Figure 32 Spiperone induces [Ca2+]cyt increase resulting in [Ca2+]mit rise. [Ca2+]cyt increase in response to 

spiperone was evaluated at different time points using FLUOA-AM, green staining. Nuclei were stained using 

Hoechst 33342 (blue). Mitochondria were stained with MitoTracker (red). Pictures were acquired by 

fluorescence microscopy (magnification: 20x). Representative images of cells treated with DMSO and 10 

μmol/L spiperone (A). Histogram showing quantification of intracellular Ca2+ FLUO4-AM/blue nuclei 

staining ratio as fold change relative to control (B). Pearson coefficient of FLUO4-AM and mitochondria 

colocalization (C). Data are presented as mean ± SD from two independent experiments, each performed in 

triplicate. **, p< 0.01; ****, p< 0.0001. 
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Figure 33 Spiperone induces mitochondrial impairment. Representative images obtained by fluorescence microscopy 

that show red J-aggregate in cells treated for 24 hours with vehicle or spiperone (A). Graph showing the reduction in 

red/green fluorescence ratio (B). Graph showing the red/green fluorescence ratio of cells treated with spiperone alone or 

in combination with BAPTA-AM (significance of each treatment versus control) (C). Data are presented as mean ± SD 

of three independent experiment performed in triplicate. **, p<0.01; ****, p<0.0001. 
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4.2.8 Intracellular Ca2+ chelation and PLC inhibition protects from 

cell death 

Since we demonstrated that spiperone induces cell death of both stem-like and differentiated CRC 

cells, and that this cytotoxicity is associated with PLC activation and alteration in Ca2+ homeostasis, 

we investigated the role of PLC and Ca2+ in spiperone antitumor activity. For this purpose, we 

evaluated the cytotoxic activity of spiperone in the presence of the PLC inhibitor U-73122 or the 

intracellular Ca2+ chelator BAPTA-AM (Figure 35AB). Our results demonstrate a significant cell 

viability rescue in cells cotreated with both spiperone and U-73122 or BAPTA, confirming 

definitively that spiperone mediated CRC cell death is PLC and Ca2+-dependent. 

 

Figure 34 Intracellular Ca2+ chelation and PLC inhibition prevent cell death. Viability analysis of HCT116 

cells treated with spiperone along with BAPTA-AM 1 μmol/L (A) and U-73122 5 μmol/L (B). Data represent 

the mean ± SD of three indipendent experiment performed in quadruplicate. Graph showing the significance 

of each treatment versus control. * P<0.05, ** P<0.01 
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5. Discussion 
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Although cancer treatment has witnessed remarkable progress over the past few decades, cancer 

remains a major threat to humans, with total cure remaining elusive. Repurposing of well-

characterized and well-tolerated drugs for cancer therapy has emerged as an attractive alternative for 

a long and costly process of drug development [184]. Psychotropic drugs are revealing promising 

candidates for drug repositioning in cancer. Although several in vitro and in vivo models reported the 

efficacy of this family of drugs in reducing cancer cell viability and tumor growth [189, 239, 240], 

the pharmacological properties underpinning the possible clinical application of psychotropic drugs 

for cancer therapy remain poorly understood. In this study we investigated a large panel of 

psychotropic drugs for their potential anti-tumoral activity evaluating their cytotoxic effect in six cell 

lines derived from three different tumor types. By using stringent screening conditions, we identified 

only a few compounds that significantly reduced cell viability at clinically relevant concentrations. 

These were represented by the antipsychotics penfluridol, pimozide, fluspirilene, nefazodone and 

spiperone, the antidepressant fluoxetine and the antihistamine ebastine. Except for spiperone, whose 

cytotoxicity was negligible in GB, all the other compounds showed cytotoxic activity in all cell lines 

tested. 

The comparable efficacy, in three different tumor types, of compounds with clinically different 

indications allows us to speculate a common mechanism of action independent from the phenotypic 

and molecular profile of the tumor and not associated with the conventional pharmacological 

properties and clinical use of these compounds. This hypothesis is corroborated by the negligible 

cytotoxicity observed with other drugs with superimposable biogenic amine receptors targeting, by 

the lack of rescue of cell viability after co-treatment with biogenic amines and by the drug 

concentration necessary to observe a biologic effect, that it is at least one order of magnitude higher 

than that needed for their conventional pharmacological targets [241].  

Based on the analysis of structure and chemical-physical properties, most psychotropic compounds 

with a significant cytotoxic activity can be classified as CADs [205, 213]. It is well demonstrated the 

formation of cytoplasmic vesicles in cells exposed to CADs results from extensive ion-trapping-based 

accumulation of lysosomotropic weak bases in acidic compartments [205, 224]. Vacuoles formation, 

inhibited by the disruption of the lysosomal V-ATPase, was observed after short term exposure of 

MCF7 cells to CADs fluoxetine, ebastine, fluspirilene, pimozide but also to nefazodone, that is not 

formally a CAD but might display some of their features. Accumulation of vacuoles in the presence 

of bafilomycin A1 was instead observed after treatment with penfluridol and spiperone, suggesting 

that the formation of vesicles by these drugs does not necessarily depend on ion-trapping in acidic 

compartments, but is favored by the block of lysosomal activity. The acidic autophagosome nature 

of these vesicles was confirmed by the requirement of class III PI3K for their formation and by the 
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positive staining with the lysosomotropic dye LysoTracker. Notably, both spiperone and penfluridol, 

that induced the formation of autophagosome structures independently from the ion-trapping 

mechanism are likely true activator of autophagy, as demonstrated by stimulation of AMPK and 

LC3B conversion and downregulation of mTOR pathway observed in MCF7 cells. 

Although lysosomotropic CADs can increase lysosomal pH after compound sequestration which 

could lead to suboptimal conditions for lysosomal digestion [242, 243], lysosomal pH increase may 

be a transient change and pH could be restored after extended exposure to lysosomotropic compounds 

[217, 244, 245]. The increased LysoTracker dye staining we observed after overnight treatment with 

drugs indicates a pH recovery after compound sequestration and reflects the increased lysosomal 

volume, suggestive of the occurrence of lysosome biogenesis induced by lysosomotropic drugs. 

Moreover, drug interactions with the lysosomal lipid bilayer and membrane proteins could influence 

the dynamics of membrane fusion and/or fission, thereby affecting trafficking steps and lysosomal 

egress [245], causing a reduction in autophagic flux and lysosomal enlargement. 

Due to their chemical structure, CADs can accumulate in acidic lysosomes [216] and incorporate to 

luminal membranes where they function as effective inhibitors of acid sphingomyelinase and other 

lysosomal lipases [205, 214]. At therapeutically relevant concentrations, CADs have been shown to 

cause the lysosomal accumulation of various lipid species, including sphingomyelin, 

phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, lysophosphatidic acid and 

cholesterol, with induction of phospholipidosis [212, 226]. In our experimental model, CADs 

ebastine, fluspirilene, fluoxetine and pimozide, that very rapidly accumulated in cells by ion-trapping, 

caused a strong increase of phospholipids aggregates. Our observations are supported by papers 

reporting the capacity of these compounds to induce phospholipidosis. Gonzalez-Rothi in 1995 first 

described the complication of pulmonary phospholipidosis in a patient with manic-depressive illness 

after treatment with fluoxetine [246]; penfluridol, pimozide and fluspirilene have been reported in a 

screening of drugs capable to inhibit sphingomyelinase and were found to induce phospholipidosis 

in neuroglioma H4 cells [205, 214] whereas ebastine was identified by electron microscope screening 

to evaluate chemicals for drug-induced phospholipidosis [247]. Our results demonstrate that, also in 

cancer cells, ebastine, fluspirilene, fluoxetine and pimozide act as typical CADs, impairing lysosomal 

activity. 

Some compounds investigated in this study, including the antipsychotics diphenylbutylpiperidines 

fluspirilene, penfluridol, and pimozide and antidepressants such as fluoxetine have been previously 

reported as autophagy inducers in neurons and in different cancer cell types such as BC and GB by 

affecting a variety of targets [248–251]. Our study shows that the cytotoxic activity of most of these 

compounds is essentially based on their common cationic amphiphilic properties and their capacity 
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to perturb acidic intracellular compartments. Moreover, although all investigated drugs caused the 

formation of acidic structures, apparently inducing the autophagic flux, only spiperone, penfluridol 

and, potentially, pimozide can be considered true autophagy activators. Overall, these data raise a 

critical issue related to clinical use of these compounds as autophagy enhancers, but they also reveal 

interesting therapeutic implications for compounds that transiently increase upstream autophagic flow 

while compromising downstream lysosomal function. 

The lysosome is emerging as a driving force in the progression of numerous human cancers, in which 

enhanced function of the autophagy–lysosome system enables efficient nutrient scavenging and 

growth in nutrient-poor microenvironments, promote the metastatic potential and treatment resistance 

[115]. But lysosomal activation in aggressive cancers can lead to alterations in lysosomal structure 

and function, which, paradoxically, renders cancer cells more sensitive to lysosomal destabilization 

[252, 253]. This frailty can be targeted by lysosomotropic compound that may have an antitumor 

effect preferentially killing the more sensitive cancer cells by inducing dysregulation of lysosomal 

lipid metabolism and LMP with release into the cytosol of cathepsins, potent inducers of cell death 

[134, 254, 255]. In our study, we observed increased Lysotracker staining, suggestive of lysosomal 

swelling that is considered a typical condition preceding LMP [134, 138, 256, 257] and galectin-1 

complexes, a surrogate marker of lysosomal membrane damage [227], suggesting a possible role of 

lysosomes in cancer cell death. This was confirmed for ebastine, penfluridol, pimozide, and 

fluoxetine, whose cytotoxic activity was partially rescued by inhibitor of cathepsins B and L but not 

by treatment with both apoptosis or autophagy inhibitors.  

Inhibition of apoptosis and autophagy were also ineffective in reducing cell death induced by 

nefazodone and fluspirilene and further experiments are required to clarify the mechanisms of cell 

death induced by these drugs.  

Notably, while inhibition of autophagy significantly rescued pimozide and spiperone cytotoxicity, it 

further increased cell death induced by penfluridol, the compound that demonstrated the highest 

cytotoxicity in all cell lines tested. The strong antitumoral activity of penfluridol may be due to its 

ability to induce both ADCD and LMP. Most of the known compounds that affect autophagy in 

neoplastic cells are either inducers or inhibitors of this process [119, 258]. However, molecules that 

can modulate autophagy in a dual mode, by both inducing and inhibiting the process, seem to 

represent a novel and effective strategy for anticancer therapy [259, 260]. 

Finally, all psychotropic compounds with cationic amphiphilic properties caused a significant 

reduction in Δψm. Since oncogenic activation leads to increased mitochondrial metabolism and 

higher Δψm compared to that of non-cancer cells [261] and experimental evidence demonstrates that 

irreversible mitochondrial membrane depolarization can induce cell death also in apoptotic resistant 
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cells [262], CADs appear excellent candidates for mitochondrial targeting in cancer, as they can easily 

diffuse in tumor tissues and interact with negatively charged mitochondrial membranes [215, 261, 

263]. Since in our cell line model cytotoxicity of psychotropic drugs was not mediated by ROS and 

thiols oxidation whereas apoptosis has been demonstrated only in cells treated with spiperone, studies 

are underway to explore the molecular mechanisms underlying CADs induced mitochondrial 

membrane depolarization and its role in inducing cancer cell death. 

In addition to acute cytotoxicity, observed, in vitro, at lower micromolar concentrations, in vivo 

psychotropic drugs with cationic amphiphilic properties can also impair cancer cell metabolism and 

sensitize tumors to chemotherapy at plasma concentrations achieved with standard therapeutic 

regimens [264, 265]. Suggestive of their efficacy in human clinical setting, epidemiologic studies 

have reported a reduced incidence of glioma and CRC among users of tricyclic antidepressants [266], 

a lower CRC risk under therapy with fluoxetine [267, 268] and an association between post diagnostic 

use of cationic amphiphilic antihistamines and reduced cancer mortality as compared with similar use 

of antihistamines that do not classify as CADs [269].  

Altogether, the data presented above identify a subset of psychotropic drugs as putative anticancer 

agents and open a feasible, safe, and economically sound possibility to test the clinical anticancer 

efficacy of this therapeutic class of compounds. In particular, the cytotoxicity of psychotropic drugs 

with cationic amphiphilic structures relied on simultaneous mitochondrial and lysosomal disruption 

and induction of cell death that not necessarily requires apoptosis.  

 

CRC represents the third most diagnosed malignancy and the fourth leading cause of cancer death in 

the world [270]. More than 50% of the patients develop chemoresistant metastasis and, despite 

improvements in cytotoxic and targeted therapy, metastatic disease is still incurable, with a survival 

rate of more than 5 years in only 20% of cases [271]. This has raised concerns over the progress of 

CRC therapy and implies that alternative conceptual and practical approaches are required for the 

treatment of advanced-stage CRC [272]. Repurposing might represent a valid therapeutic option, 

especially in frail patients who are no longer candidates for aggressive therapeutic approaches, and 

psychotropic medications are promising as a new generation of cancer chemotherapies [239]. 

Notably, epidemiological data support reduced risks for rectal cancer among male patients with 

schizophrenia [273], colon cancer in female neuroleptic users [274] and colorectal cancer in 

antidepressant users [268]. 

In this study, we identified spiperone, a typical antipsychotic, belonging to the butyrophenone family, 

approved in Japan in 1969 for the treatment of schizophrenia [275] as a promising compound for 

CRC therapy.  
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Viability assays demonstrated a potent in vitro antitumor activity of spiperone at low micromolar 

concentrations, compatible with therapeutic concentrations in humans [276], whereas viability of 

normal, non-cancerous cells was only slightly affected by very high doses of the drug. Remarkably, 

spiperone induced apoptosis and reduced the clonogenic potential of undifferentiated CRC grown in 

colonospheres, suggesting that spiperone can target CRC-SCs, which represent the main cause of 

tumor growth, metastasis formation and relapse [277]. 

Unlike other antipsychotic drugs displaying cationic amphiphilic properties, spiperone cytotoxicity 

was associated neither with phospholipidosis nor with lysosomal damage. In CRC cells, instead, we 

observed a PLC-dependent increase of [Ca2+]cyt after spiperone treatment, confirming previous pieces 

of evidence in embryonic kidney 293 (HEK293) cells and in cystic fibrosis models showing that 

spiperone could modulate [Ca2+]cyt in a PLC-dependent manner [232, 278].  

Currently, known targets of spiperone are serotonin (5-HT1A, 5-HT2A) and dopamine (D2,3,4) 

receptors [279, 280], however, our results suggest the possible involvement of other still unknown 

targets. The concept of polypharmacology, which involves the interaction of drug molecules with 

multiple targets, is recurrent among neuroleptics, that can recognize multiple aminergic GPCR in 

addition to dopamine receptors [281]. Since many isoforms of PLC exist and can be activated 

downstream receptor tyrosine kinase (RTKs), G protein-coupled receptors (GPCRs) and small 

GTPases [282], the identification of the PLC isoform involved in spiperone induced calcium release 

could help to clarify the molecular pathway involved in spiperone antitumor activity.  

Although spike calcium release and PKC activation may represent a short term physiological response 

downstream spiperone receptor activation, long term treatment with the drug induces a long-lasting 

increase of [Ca2+]cyt. A well-known consequence of intracellular Ca2+perturbation is ER stress [165] 

and activation of UPR [283].  Although the UPR is an essential adaptive mechanism that promotes 

cell survival, in case of severe or irreparable damage, prolonged UPR switches from pro-survival 

signaling to pro-death signaling leading to activation of intrinsic apoptotic and autophagy pathways 

[153]. In CRC, spiperone induces UPR already after two hours of treatment, with activation of both 

PERK and IRE1 signaling branches. The expression of CHOP and phosphorylation of JNK/P38 

MAPK, link spiperone-induced ER stress to cell death. In particular, CHOP is known to induce the 

overexpression of proapoptotic proteins of the BCL2 family, resulting in mitochondrial impairment, 

release of cytochrome C and caspases activation [284]. CHOP mediates apoptosis also through other 

pathways. CHOP can increase the expression of the ERO1α (ER reductase) gene, which catalyzes the 

oxidation of protein disulfide isomerase (PDI), resulting in the production of ROS [285, 286]. 

Additionally, CHOP directly activates GADD34 (DNA damage protein), which combines with 

phosphatase 1 protein (PP1) and dephosphorylates eIF2α, resulting in protein translation recovery 
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and increase of ER stress and cell apoptosis [287]. Further studies are ongoing to investigate these 

multiple pathways to clarify the role of ER stress in spiperone-induced cell death.   

While, in physiological conditions, Ca2+ resides mainly within the lumen of the ER, and it is released 

only during cellular events requiring Ca2+ signal; alterations in intracellular Ca2+ homeostasis leads 

to massive and/or a prolonged-release resulting in mitochondrial membrane depolarization and Ca2+ 

overload, crucial events that trigger apoptosis [237, 238, 288, 289].  

We observed [Ca2+]cyt increase already after 5 minutes of treatment, while mitochondrial overload 

occurred after 3 hours. Our data suggest that this prolonged Ca2+ increase, which occurs after either 

ER release or membrane channel activation, is likely to trigger not only mitochondrial membrane 

depolarization but also cell death, as verified by membrane depolarization and viability rescue with 

the intracellular Ca2+ chelator BAPTA-AM.  

However, in order to better determine the mechanism through which spiperone triggers long term 

[Ca2+]cyt increase, further experiments will be performed to clarify the involvement of membrane 

receptors. In addition, considering the tight link between ER and mitochondria [237], a clearer 

comprehension of spiperone activity at the MAM will further characterize the connection between 

ER stress, mitochondrial depolarization, Ca2+ dynamics and cell death in CRC cells. 

In conclusion, altogether these results highlight the fact that dual targeting of lysosomes and 

mitochondria constitutes a new promising therapeutic approach for cancer, particularly those in which 

the apoptotic machinery is defective. Moreover, the individuation of drugs, such as spiperone, that 

prove effective in inducing selectively ER stress, UPR activation along with intracellular Ca2+ 

homeostasis dysregulation, could represent a crucial step in the development of new therapeutic 

strategies in cancer treatment. 

Notably, it was previously reported spiperone efficacy in inhibiting the Wnt pathway, targeting the 

Wnt1/LRP6 and Wnt3/LPR6 complexes and leading to ubiquitination and degradation of β-catenin, 

[232]. Considering the dependence of CRC cells on the Wnt/β-catenin pathway, the observed 

reduction of CRC viability upon spiperone treatment could be also linked to the inhibition of this 

pathway. Further experiments will be performed in order to understand the role of spiperone in the 

Wnt/β-Catenin pathway and how this drug can alter the functioning of β-catenin. Spiperone, in fact, 

could induce β-Catenin degradation or interfere with its nuclear translocation, which is an essential 

event for gene transcription and cancer progression [290].  
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Supplementary figure 1. Effect of psychotropic drugs on cancer cell lines viability. Six cancer cell lines were treated for 72 h with scalar doses of drugs 
ranging from 10 to 160 /L. The screened drugs included antipsychotics, antidepressant, antihistamines and three compounds used in scientific 
research with reported serotonin receptors antagonistic activity (R59949, R59022; WAY-100135). Cell viability is shown as percentage of viable cells versus 
control. Data are presented as mean ± standard deviation (SD) from three independent experiments, each performed in quadruplicate
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Supplementary figure 2. Dose response curves showing the cytotoxic effect of psychotropic drugs on
neoplastic cells. Cells were treated for 72 h with scalar doses of drugs ranging from 10 to 160 /L.
Viabilities were assessed by MTT assay, normalized for cells treated with vehicle only and expressed as
percentage. The best fit values of IC50 values were calculated the by using a variable slope model
(GraphPad Prism 7). Each data point represents the mean of at least three independent experiments.
IC50, drug concentration reducing by 50% viability compared to control; 95% CI, 95% confidence
interval.



Supplementary Figure 3. Dose and time response curves showing the cytotoxic effect
of ebastine, fluoxetine, pimozide and penfluridol on MCF7 cells. Cell were treated for 6
days with increasing doses of drugs. Viabilities were assessed by MTT assay and
normalized relative to controls treated with vehicle only. Data are expressed as the
mean ± SD of one representative out of three independent experiments performed in
quintuplicate.3



Supplementary Figure 4. CADs features of psychotropic drugs with antitumoral activity. Structure of
cationic amphiphilic drugs and psychotropic drugs are shown. Circles indicate the hydrophilic region
containing an amine group protonated at physiological pH, arrows indicate the hydrophobic region
containing aromatic groups.
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Supplementary Figure 5. Vacuolar structures formation after treatment of MCF7 cells with
psychotropic drugs. Morphological alterations associated with the treatment of MCF7 cells with
psychotropic drugs (5 /L) were investigated after 6 h of exposure by phase contrast microscopy
(original 20x). Representative images of cells treated with DMSO, positive control,
ebastine, fluoxetine, fluspirilene, nefazodone, penfluridol, pimozide, spiperone and rapamycin,
positive control (A). Histogram showing quantification of vacuoles as fold change relative to control
(B). Data are expressed as the mean ± SD of a representative experiment out of three independent
experiments performed in triplicate. **, T-test p < 0.01; ***, T-test p < 0.001.
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Supplementary Figure 6. Psychotropic drugs induce acidic compartment formation perturbing
lysosomal and autophagic functioning. Vacuolar structures associated to treatment with
psychotropic drugs in MCF7 were analyzed, after 6h exposure, staining cells with Lysotracker Deep
Red. Pictures were acquired at fluorescence microscopy (magnification: 20x). representative images
of cells treated with DMSO, negative control, ebastine, fluoxetine, fluspirilene, nefazodone,
penfluridol, pimozide, spiperone and rapamycin
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Supplementary Figure 7. Psychotropic drugs alter autophagy flux through mTOR pathway
inhibition. Delocalization of mTOR from lysosomal membrane was evaluated in MCF7 after 16h
treatment with psychoactive drugs. mTOR was stained using mTOR primary antibody and Alexa Fluor
488 secondary antibody (green). Lysosomes were stained using LAMP1 primary antibody and Alexa
Fluor 536 secondary antibody (red). Representative images of fluoxetine, fluspirilene, nefazodone,
pimozide

LAMP1mTOR Merge Zoom



Supplementary Figure 8. Spiperone induces apoptosis in MCF7 cells. MCF7 cells treated for 48 hours
with vehicle and psychotropic drugs at a concentration of 10 /L for all the drugs except for
penfluridol, 5 /L. Staurosporine 0.5 /L was used as apoptosis positive control. (A)
representative populations observed by FACS analysis. (B) Graph showing Annexin V and Propidium
Iodide positive/negative events as fold change relative to vehicle (DMSO). Data show mean ± SD of
one representative experiment out of three independent experiments performed in duplicate. *,

T-test p < 0.05; **, T-test p < 0.01; ***, T-test p < 0.001
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Supplementary Figure 9. 3-MA does not induce LC3B expression upon psychotropic drugs 
stimulation. Western blot analysis showing effects on autophagic pathway after 16 hours treatment 
with spiperone and penfluridol plus 3-MA on MCF7. Lysates analyzed LC3B and GAPDH (A). Histogram 
showing quantification of the relative expression of LC3B II/I. Densitometry are expressed as the 
mean ± SD of three independent experiments.
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Background and Purpose: Drug repositioning is a promising strategy for discovering

new therapeutic strategies for cancer therapy. We investigated psychotropic drugs for

their antitumor activity because of several epidemiological studies reporting lower cancer

incidence in individuals receiving long term drug treatment.

Experimental Approach: We investigated 27 psychotropic drugs for their cytotoxic

activity in colorectal carcinoma, glioblastoma and breast cancer cell lines. Consistent

with the cationic amphiphilic structure of the most cytotoxic compounds, we investigated

their effect on mitochondrial and lysosomal compartments.

Results: Penfluridol, ebastine, pimozide and fluoxetine, fluspirilene and nefazodone

showed significant cytotoxicity, in the low micromolar range, in all cell lines tested.

In MCF7 cells these drugs caused mitochondrial membrane depolarization, increased

the acidic vesicular compartments and induced phospholipidosis. Both penfluridol and

spiperone induced AMPK activation and autophagy. Neither caspase nor autophagy

inhibitors rescued cells from death induced by ebastine, fluoxetine, fluspirilene and

nefazodone. Treatment with 3-methyladenine partially rescued cell death induced

by pimozide and spiperone, whereas enhanced the cytotoxic activity of penfluridol.

Conversely, inhibition of lysosomal cathepsins significantly reduced cell death induced

by ebastin, penfluridol, pimozide, spiperone and mildly in fluoxetine treated cells. Lastly,

Spiperone cytotoxicity was restricted to colorectal cancer and breast cancer and caused

apoptotic cell death in MCF7 cells.

Conclusions: The cytotoxicity of psychotropic drugs with cationic amphiphilic

structures relied on simultaneous mitochondrial and lysosomal disruption and induction

of cell death that not necessarily requires apoptosis. Since dual targeting of lysosomes

and mitochondria constitutes a new promising therapeutic approach for cancer,

particularly those in which the apoptotic machinery is defective, these data further

support their clinical development for cancer therapy.

Keywords: lysosomotropism, cationic amphiphilic drugs (CADs), autophagy, psychotropic drug, cancer,

repositioning
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INTRODUCTION

Cancer represents a major public health problem, with total cure
remaining elusive for most cancer types (1, 2). Chemotherapy
resistance in patients with recurrent and advanced disease (3)
and strong systemic toxicity, especially in elderly (4), have
raised concerns over the progress of cancer therapy, making
it necessary to change the paradigm in the search for new
treatments, more effective and with milder adverse effects. Thus,
alternative cell death pathways capable of killing apoptosis-
and therapy resistant cancer cells, have gained vast interest

among cancer researchers, leading to the identification of
autophagy and lysosomal cell death programs as attractive means
to circumvent therapy resistance (5–8). Lysosomal activation
is common in aggressive cancers, where lysosomes promote
disease progression and treatment resistance (9–13). In cancer,

cell transformation increases the requirement for new biomass
production, and the core function of the lysosomes is to recycle
endogenous or exogenous macromolecules to provide energy

and metabolic precursors for the synthesis of new cell mass.
In response to typical challenges encountered by cancer cells,
such as nutrient starvation, growth factor withdrawal, energy
depletion, organelle damage, or accumulation of abnormal
proteins, autophagy is further enhanced to meet the cellular
needs (10, 13). In certain circumstances, however, the prolonged
over activation of the autophagosomal/lysosomal pathway can
lead to autophagic-dependent cell death a caspase-independent
form of programmed cell death (14), that can be evaluated as
an alternative cancer treatment modality (15). On the other
hand, since many tumors are highly dependent on autophagy
for survival and treatment resistance, pharmacological inhibition
of lysosomal activity can limit the growth of advanced diseases
and improve response to therapy (5, 16). Moreover, the cancer-
associated changes in lysosomal composition result in reduced
lysosomal membrane stability, thereby sensitizing tumor cells to
lysosome-dependent cell death (LDCD) (17). The main feature
LDCD is lysosomal membrane permeabilization (LMP) (17, 18)
with translocation to the cytoplasm of the lysosomal contents,
including cathepsins, which act as the main executors of this
cell death modality (19). Mitochondria have a well-recognized
role in the production of ATP, metabolic intermediates and also
participate in several signaling pathways; accumulating evidence
now suggests that mitochondrial bioenergetics, biosynthesis and
signaling are required for tumorigenesis. Thus, emerging studies
have begun to demonstrate that mitochondrial functions are
a potentially fruitful field for cancer therapy (20, 21). Drug
repositioning is a strategy for identifying new uses for approved
drugs that are outside the scope of the original medical indication
(22, 23) and psychotropic medications are promising compounds
for cancer treatment. Epidemiological studies have repeatedly
reported that individuals who are receiving long term drug
treatment with antipsychotics (24, 25), anti-depressant (26–28)
or anti-allergic drugs (29) have a lower cancer incidence than the
general population, suggesting that these medications might have
a direct effect on neoplastic cells. Pre-clinical studies confirmed
the direct anti-tumoral activity of these compounds in a wide
range of malignancies (30–34). However, despite the large body

of experimental evidence, the mechanisms of actions of these
compounds in cancer cells remain poorly defined.

In this study we screened a panel of psychotropic compounds
for their cytotoxicity in different tumor cell lines to clarify
the pharmacological properties underpinning their clinical
application for cancer therapy. We identified a group of drugs
characterized by cationic amphiphilic properties impairing both
mitochondrial and lysosomal function and reducing cancer cells
viability at clinically relevant concentrations.

METHODS

Cell Culture
HCT116, SW620, MCF7, MDA-MB-231, U87 and U251 cell lines
were purchased from the American Type Culture Collection
(ATCC). HCT116, MCF7, and U251 cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM, Gibco; Life
Technologies) supplemented with 10% fetal bovine serum (FBS,
Euroclone) and 1% antibiotics and antimycotics (Penicillin,
Streptomycin, Amphotericin, Sigma). SW620 andMDA-MB-213
cells were cultured in RPMI-1640 (Gibco, Life Technologies) with
10% fetal bovine serum (FBS, Euroclone) and 1% antibiotics and
antimycotics (Penicillin, Streptomycin, Amphotericin, Sigma).
U87 cells were cultured in Minimum Essential Medium (MEM,
Gibco; Life Technologies) with 10% FBS and 1% antibiotics and
antimycotics. All the cell lines were maintained in incubator at
37◦C with 5% CO2.

Drugs
Psychotropic drugs used in the screening were purchased
from Cayman Chemicals, Sigma, TCI Chemicals and
Selleck Chemicals. List of drug used: aripiprazole,
brexpiprazole, cetirizine, diphenhydramine, droperidol, ebastine,
fluoxetine, fluspirilene, haloperidol, iloperidone, ketanserin,
metoclopramide, nefazodone, paliperidone, penfluridol,
pimozide, pipamperone, R59022, R59949, risperidone, ritanserin,
spiperone, trazodone, urapidil, way-100135, and ziprasidone. All
drugs were dissolved in DMSO at a 10 mmol/L concentration
and stored, in small aliquots at−20◦C.

MTT Viability Assay
For each cell line, 1000 cells/well were plated in a volume
of 100 µL in 96 wells plate. Cells were treated with different
concentrations of drug (160, 80, 40, 20, and 10 µmol/L) and
incubated for 72 h. For each concentration of drug, the same
concentration of vehicle (DMSO) was used as control. MTT
(thiazolyl blue tetrazolium bromide, Sigma) 0.5 mg/ml was, then,
added to each well and incubated for 4 h at 37◦C and 5% CO2.
Crystals were dissolved using 100 µl of acidic isopropanol (4
mmol/L HCl) and the absorbance (570 and 650 nm) was read at
the spectrophotometer (Victor, PerkinElmer).

To perform viability assay with biogenic amines 4,000
cells/well from MCF7 and HCT116 were plated in 96 wells
plate. Cells were treated with different doses of serotonin,
dopamine and histamine (Cayman Chemicals) in DMEM 0%
FBS and viability was evaluated after 24- and 48-h treatment by
MTT assay.
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Viability Rescue Assay
To perform viability rescue experiments, 1,500 MCF7 cells were
plated in 96 wells plate and treated with 10 µmol/L spiperone,
nefazodone, fluoxetine, fluspirilene, ebastine, pimozide or
5 µmol/L penfluridol in combination with vehicle alone
(DMSO), or with 5 µmol/L carbobenzoxy-valyl-alanyl-aspartyl-
[O-methyl]fluoromethylketone (zVAD-fmk, AdipoGen), 2.5
mmol/L 3-methyladenine (3-MA, AdipoGen), 5 mmol/L
N-[[(2S,3S)-3-[(propylamino) arbonyl]-2-oxiranyl]carbonyl]-
L-isoleucyl-L-proline, methyl ester (CA-074 me, Cayman
Chemical), 5 µmol/L cyclosporin A (Cayman Chemical) and
5 µmol/L N-Acetyl-L-cysteine (NAC, Sigma Aldrich). MTT
viability assay was performed after 72 h as previously described,
except for NAC where, prior to MTT adding, medium was
removed and each well was washed with 100 µL of phosphate
buffered saline. For biogenic amines viability rescue, 1,500
MCF7 cells were seeded in 96 wells plate and treated with IC50

concentration of the following drugs: spiperone, nefazodone,
fluoxetine, fluspirilene, ebastine, pimozide, penfluridol in
combination with vehicle (DMSO) or 5 µmol/L dopamine,
serotonin or histamine. MTT viability assay was performed as
described before after 24, 48, and 72 h.

Apoptosis Assay
Fifty thousand MCF7 cells were plated in 24 wells plate and
treated for 48 h with 10 µmol/L fluoxetine, ebastine, pimozide,
fluspirilene, spiperone, nefazodone, or 5 µmol/L penfluridol.

Cells were then stained following the manufacturer’s
instruction (AdipoGen). Briefly, cells were incubated for 10min
at room temperature with annexin binding buffer 1X (10
mmol/L HEPES/NaOH, pH 7.4, 140 mmol/L NaCl, 2.5 mmol/L
CaCl2) containing Annexin V-FITC. Lastly, cells were washed
and resuspended in annexin binding buffer 1X. Propidium
iodide was added to all the samples 5min before FACS analysis
(Attune Nxt, Flow Cytometer, Thermo Fisher Scientific). Data
were analyzed with FlowJoTM software (Becton, Dickinson
and Company).

Migration Assay
Migration assay was performed using culture-insert 2 well
in µ-dish (ibidi GmbH, Martinsried, Germany) as previously
described (35). Briefly 30,000 HCT116 cells and 25,000 MCF7
cells were plated in each side of the insert in 24 wells plate. After
24 h, inserts were removed, and cells were treated with respective
psychotropic drugs (5 µmol/L) or DMSO (0.05%) in complete
medium. Images were acquired at 0 and 24 h after treatment, with
phase contrastmicroscope and analyzed through ImageJ software
(NIH, USA). Data were shown as % of closure rate relative to
time 0.

Vacuolization Assay
MCF7 cells were plated at the concentration of 25,000 cells/well
in 48 wells plate and then treated with fluoxetine, ebastine,
penfluridol, pimozide, fluspirilene, spiperone, nefazodone at the
concentration of 5 µmol/L or rapamycin (10 µmol/L). After
2 h treatment one well from each treatment was treated with
bafilomycin A1 (50 nmol/L) or 3-MA (1 mmol/L). Pictures

were acquired with a phase contrast microscope 4 and 6 h after
treatment, images were analyzed by ImageJ software. Analysis
shows the percentage of vacuolization rate for each treatment.

Mitochondrial Membrane Potential
Analysis
Mcf7 cells were plated at the concentration of 20,000 cells/well
in 48 wells plate and treated with 5 µmol/L fluoxetine, ebastine,
fluspirilene, nefazodone penfluridol, pimozide, spiperone.
DMSO 0.05% was used as negative control. After treatment,
cells were stained with 10µg/ml JC-1 dye (Adipogen) in PBS
for 30min in the dark at 37◦C. FCCP (Cayman chemicals) was
added for 15min after the staining as positive control. Signals
were acquired with a fluorescence microscope (FLoid Cell
Imaging Station, Life Technology) and images were analyzed by
ImageJ software calculating red/green fluorescence ratio.

Lysotracker Assay
MCF7 cells were plated at the concentration of 20,000 cells/well
in 48 wells plate and treated with 5 µmol/L fluoxetine, ebastine,
fluspirilene, nefazodone penfluridol, pimozide, spiperone or 10
µmol/L rapamycin for 16 h. After the treatment, medium was
removed and cells were stained with Lysotracker Deep Red
(Invitrogen, 50 nmol/L) and Hoechst 33342 (5µg/ml) for nuclei
staining, in the dark at 37◦C for 30min. Signals were acquired
with a fluorescence microscope (FLoid Cell Imaging Station,
Life Technology). Lysotracker red signal/blue nuclei signal was
analyzed by ImageJ software.

Phospholipidosis Assay
MCF7 cells were plated at the concentration of 20,000 cells/well
in 48 wells plate and treated with 5 µmol/L ebastine, fluoxetine,
fluspirilene, nefazodone penfluridol, pimozide, spiperone or 10
µmol/L rapamycin and stained with 1X LipidTox green (Thermo
Fisher Scientific) for 16 h.

Subsequently, nuclei were stained using Hoechst 33342
(5µg/ml) and plate was incubated for 30min in the dark
at 37◦C. Afterwards, cells were washed with PBS and fixed
with paraformaldehyde 4% for 15min in the dark. Signals
were acquired with a fluorescence microscope (FLoid Cell
Imaging Station, Life Technology) and images were analyzed by
ImageJ software.

Western Blotting
MCF7 cells were plated at the concentration of 150,000 cells/well
in 6 wells plate and treated with 5 µmol/L ebastine, fluoxetine,
fluspirilene, nefazodone penfluridol, pimozide, spiperone for
16 h. For experiment of autophagic flux two conditions were
carried out for each drug: drug alone and co-treatment of drug
and chloroquine 50 µmol/L. For experiment to evaluate LC3B
expression upon 3-MA treatment, cells were pre-treated with
3-MA 1 mmol/L for 2 h and then cotreated with spiperone
and penfluridol 5 µmol/L for 16 h. After treatments, whole
cell lysates were prepared using RIPA lysis buffer (25 mmol/L
Hepes pH 8, 135 mmol/L NaCl, 5 mmol/L EDTA, 1 mmol/L
EGTA, 1 mmol/L ZnCl2, 50 mmol/L NaF, 1% Nonidet P40, 10%
glycerol) with protease inhibitors (AEBSF, aprotinin, bestatin,
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E-64, EDTA, leupeptin, Sigma-Aldrich) and orthovanadate.
Lysates were then kept on a wheel for 20min at 4◦C and
after centrifuged at 12,500 g for 15min. Proteins contained
in the samples were collected and quantified using Pierce
BCA protein assay kit (Thermo Fisher Scientific). Successively,
proteins were denatured at 95◦C for 5min in presence of 2%
SodiumDodecyl Sulfate (SDS), 150mmol/L dithiothreitol (DTT)
and 0.01% bromophenol blue. Electrophoresis of the samples was
performed using 6, 8, 10, or 15% polyacrylamide gels and proteins
were transferred from the gel to a PolyVinylidene DiFluoride
membrane (PVDF, Amersham). Lastly, the membrane was
saturated using 3% Bovine Serum Albumin (BSA, Sigma) in
TBS/Tween-20 0.1% [Tris Buffered Saline 1X containing Trizma
base 50 mmol/L, NaCl 120 mmol/L, 0.1% Polyethylene glycol
sorbitan monolaurate (Tween-20)] for 1 h and incubated with
primary antibody dissolved in the same buffer with sodium
azide 0.01%. Primary antibodies were anti-LC3B (Thermo
Scientific), anti-P-P70S6K T389 (Cell Signaling Technology),
anti-P70S6K (Cell Signaling Technology), anti-P-S6 S235/236
(Cell Signaling Technology), anti-S6 (Cell Signaling Technology)
anti-P-AMPKα T172 (Cell Signaling Technology), anti-AMPK
(Cell Signaling Technology), anti-GAPDH (Cell Signaling
Technology). The day after, primary antibody was removed and
the membrane was washed with TBS-Tween-20 0.1% for 15min
three times and then incubated with horseradish peroxidase
conjugated secondary anti-mouse or anti-rabbit antibody (Perkin
Elmer Life Science) diluted 1:3000 in TBS-Tween-20 0.1% for
45min. After washing, reading of the membrane was performed
using ECL Western Lightning Chemiluminescence Reagent Plus
(Perkin Elmer Life Science) and images acquired with the
Chemidoc Touch (Bio-Rad).

Immunofluorescence Microscopy Analysis
MCF7 cells at the concentration of 50,000 cells/well were seeded
onto glass coverslips and treated with 5 µmol/L fluoxetine,
ebastine, penfluridol, pimozide, fluspirilene, spiperone,
nefazodone for 16 h. After the treatment, cells were washed
with PBS and fixed with PFA 4% for 10min at room temperature
and washed with PBS. Then cells were permeabilized incubating
with cold HEPES-Triton X-100 (20mM HEPES pH 7.4, 300mM
sucrose, 50mM NaCl, 3mM MgCl2, 0.5% Triton X-100)
for 5min at 4◦C. Cells were washed with 0.2% PBS-BSA
and saturated using 2% PBS-BSA for 15min before placing
primary antibodies.

Antibodies used in these experiments were anti-mTOR
(Cell Signaling Technology), anti-Galectin-1 (Santa Cruz
Biotechnology), anti-LAMP1 (Santa Cruz Biotechnology). Cells
were incubated with primary antibodies for 30min, then washed,
saturated with 2% PBS-BSA and incubated with secondary
antibodies conjugated with Alexa Fluor-488, −536 (Invitrogen)
and DAPI for 30 min.

After the incubation, glasses were mounted on glass slides
using Mowiol (20%Mowiol 4–88, 2.5% DABCO in PBS, pH 7.4).
Images were acquired at confocal microscope Leica TCS SP8 or
fluorescence microscope DM5500B (Leica) and analyzed using
ImageJ software.

Compounds Chemical Analysis
The properties of the compounds (LogP and basic pKa) were
investigated using ACD/ LAB software. As reported in the
publication of Muehlbacher (36) there is not a clear CADs
classification based on chemical properties. We decided to
apply the same parameters based on LogP and pKa applied
in the Muehlbacher’s manuscript. In particular, compounds
were considered CADs when LogP > 3, for the amphiphilic
characteristics, and a PKa > 7.4 for the cationic characteristics.

Statistical Analysis
Prism 8.0 software was used for statistical analysis (GraphPad
software Inc., San Diego, CA). In viability assays, IC50 was
determined using a variable slope model referring to the values
obtained during the assay; a semi-logarithmic dose-response
curve was created.

Statistical significance was analyzed using Student’s t-test with
p < 0.05 as the criterion of significance when two groups were
compared. Analysis of contingency tables were performed using
Prism 8.0 software (GraphPad software Inc., San Diego, CA) and
statistical significance was evaluated using Fisher exact test with
p < 0.05.

RESULTS

The Antitumoral Activity of Psychotropic
Drugs Transcends the Conventional
Therapeutic Classes and Tumor Type
To identify compounds with potential, clinically relevant,
anticancer activity we first assessed their effect on six different
tumor types represented by two colorectal cancer (CRC; HCT116
and SW620), two breast cancer (BC, MCF7, and MDA-MB-
231) and two glioblastoma (GB; U87MG and U251MG) cell
lines. Cells were treated for 72 h with scalar doses of drugs
ranging from 10 to 160 µmol/L. The screened drugs (N = 26)
were represented by antipsychotics (n = 14), antidepressant
(n = 2), antihistamines (n = 3) and three compounds used
in scientific research with reported serotonin receptors
antagonistic activity (Figure 1, Supplementary Figure 1,
Supplementary Table 1). For drugs that induced more than 50%
cell viability reduction at a concentration lower than 100µmol/L,
in a dose-dependent manner, the IC50 values were calculated
(Supplementary Figure 2, Supplementary Table 1).

The most effective drugs in all cell lines tested
belonged to all three pharmacological classes investigated
(antipsychotics, antidepressants, and antihistamines) (Figure 1,
Supplementary Figures 1, 2, Supplementary Table 1). The
six most potent drugs induced more than 50% cell viability
reduction at a concentration lower that 10 µmol/L (penfluridol,
ebastine), 15 µmol/L (pimozide and fluoxetine) or 25 µmol/L
(fluspirilene and nefazodone) in all cell lines tested; spiperone
and brexpiprazole proved to be highly effective in both CRC
and BC (with IC50 < 10 µmol/L and 10 < IC50 < 20 µmol/L,
respectively) whereas their cytotoxicity was negligible in GB. A
tendency for the diphenylbutylpiperidines pimozide, fluspirilene
and penfluridol to be more effective in BC and CRC than in
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FIGURE 1 | Anticancer activity of psychotropic drugs. Two CRC (HCT116 and SW620), 2 BC (MCF7 and MDA-MB-231) and 2 GB (U87MG and U251) cell lines were

treated for 72 h with scalar doses of drugs ranging from 10 to 160 µmol/L. The screened drugs included antipsychotics, antidepressant, antihistamines, and three

compounds used in scientific research with reported serotonin receptors antagonistic activity (R59949, R59022; WAY-100135). Viabilities were assessed by MTT

assay. Data are presented as mean IC50 ± standard error of the mean (SEM) from three-five independent experiments, each performed in quadruplicate. IC50, drug

concentration reducing by 50% viability compared to control. Histograms show drugs with IC50 < 100 µmol/L.

GB was also observed (Supplementary Table 1). Aripiprazole
and ritanserin demonstrated a moderate cytotoxicity, whereas
droperidol, haloperidol and iloperidone showed a weak effect
only in a fraction of cell lines. Notably, in the lower range
of concentrations, some compounds induced a moderate
increase in cell viability reflecting cell proliferation: haloperidol

in all cell lines tested; ritanserin and the two structurally
related compounds R59022 and R5949 in CRC cell lines
only, whereas iloperidone in MCF7 and U87MG cell lines
(Supplementary Figure 1).

Eight compounds, represented by the antihistamines
cetirizine and diphenhydramine, the antipsychotics paliperidone,
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FIGURE 2 | Effect of biogenic amines on HCT116 and MCF7 cell viability. MCF7 and HCT116 cells were grown for 24 or 48 h in serum-free medium in presence of

scalar doses of biogenic amines serotonin, dopamine, or histamine. Viabilities were assessed by MTT assay and presented as the percentage of viable cells vs.

control. Data show mean ± SD of one representative experiment out of three independent experiments performed in quadruplicate.

pipamperone and risperidone, the antihypertensives ketanserin
and urapidil, and the antiemetic metoclopramide showed
no cytotoxicity, or caused a reduction of at least 50% of
cell viability only at very high concentrations (>60 µmol/L)
(Supplementary Figure 1, Supplementary Table 1). A few
of these drugs i.e., urapidil, cetirizine, diphenhydramine and
metoclopramide even induced cell growth in one or more cell
lines tested (Supplementary Figure 1). These results clearly
suggest that the cytotoxic effect of these compounds in the
micromolar range is not associated with their conventional
pharmacological properties and clinical use.

Cytotoxicity of Psychotropic Drugs Is Not
Mediated by Biogenic Amine Receptors
At therapeutic concentrations, the main pharmacological targets
of these compounds are biogenic amines receptors (37, 38). The

precise role of biogenic amines such as histamine, dopamine,
and serotonin in cancer is still debated (39–41). To test
biogenic amines in our cell lines modes, we treated HCT116
and MCF7 cells with a wide range of concentrations of
serotonin, dopamine and histamine and evaluated viabilities
after 24 and 48 h. In our assay conditions we observed no
significant effect on cell proliferation even at very high doses
(Figure 2). Long term treatment of MCF7 cells with the
strongest cytotoxic compounds penfluridol, ebastine, pimozide
or fluoxetine at clinically significant concentrations determined
only a modest increase of drugs efficacy, with IC50 values
that remained above 3 µmol/L even after 6 days of treatment
(Supplementary Figure 3).

Notably, neither dopamine, nor serotonin and histamine,
added to the culture media, were able to rescue the cytotoxic
effect of these drugs (Figure 3).
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FIGURE 3 | The cytotoxic effect of psychotropic drugs is not reduced by co-treatment with biogenic amines. MCF7 cells were treated with psychotropic drugs alone

(at a concentration equivalent to IC50) or in presence of 5 µmol/L biogenic amines serotonin, dopamine or histamine. Viabilities were assessed by MTT assay at

different time points and presented as fold change relative to control cells treated with vehicle only. Data show mean ± SD of one representative experiment out of

three independent experiments performed in quadruplicate.

These data further support the hypothesis that these
compounds affect tumor cell viability through a mechanism that
is not mediated by the major neuroreceptor systems implicated
in their psychotropic effects.

Psychotropic Drugs Affect Tumor Cell
Migration
To determine the effect of psychotropic drugs on the motility
of cancer cells, we assessed MCF7 and HCT116 cells migration
by the wound-healing assay (Figure 4). All active drugs caused a
reduction in the motility of MCF7 cells with the strongest effects
observed with penfluridol, spiperone, urapidil and brexpiprazole
(Figure 4A). On the contrary, the migration rate of HCT116 cells
was unexpectedly increased by the cytotoxic compounds ebastine
and penfluridol, as well as by different other compounds such
as urapidil, diphenhydramine, ritanserin, R59022 and R59949;
spiperone, and to a lesser extent, ketanserin and trazodone,
reduced HCT116 cells motility (Figure 4B). Overall, these results
show that: (i) the impact of the different compounds on the
migration rate is not strictly associated with their cytotoxic effect

or their conventional pharmacological properties and clinical
use; (ii) the effect of the compounds on cell motility is cell
line specific.

Psychotropic Drugs With Significant
Antitumoral Activity Display a Cationic
Amphiphilic Structure
Cationic amphiphilic drugs (CADs) are defined as chemical
compounds with the ability to passively diffuse through lipid
bilayers stacking in acid organelles such as lysosomes (42).
These compounds contain both a hydrophobic and a hydrophilic
domain; the hydrophobic domain contains one or more aromatic
rings whereas the hydrophilic part contains a functional amine
group that can be ionized (43). CADs family comprises a broad
spectrum of compound classes, including dozens of approved
drugs that are used to treat a wide range of diseases including
allergies, heart diseases, and psychiatric disorders (44, 45). Since
the antitumoral activity of compounds investigated in this study
is not apparently related to their conventional pharmacological

Frontiers in Oncology | www.frontiersin.org 7 October 2020 | Volume 10 | Article 562196

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Varalda et al. Antitumoral Activity of Psychotropic Drugs

FIGURE 4 | Effect of psychotropic drugs on cancer cells migration. Cell motility was evaluated by wound healing assay. MCF7 (A) and HCT116 (B) cells were plated

in 2 wells IBIDI chambers. After removing the insert, cells were treated with drugs (5 µmol/L) in DMEM 10% FBS. The widths of wounds were measured at 0 and 24 h.

Graphs show the closure rate. Data are presented as mean ± SD from three independent experiments, each performed in triplicate. *, Student’s T-test p < 0.05; **,

Student’s T-test p < 0.01; ***, Student’s T-test p < 0.001. Representative images of MCF7 and HCT116 wounds after treatment with penfluridol, spiperone, and

DMSO (C).
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FIGURE 5 | Psychotropic drugs induce mitochondrial membrane depolarization. Mitochondrial membrane potential depolarization was evaluated by JC-1 staining

after overnight treatment with psychotropic compounds (5 µmol/L) in MCF7 cells. Pictures were acquired by fluorescence microscopy. Representative images of cell

treated with the negative control DMSO, carbonyl cyanide 4-[trifluoromethoxy]phenylhydrazone (FCCP), positive control, ebastine, fluoxetine, fluspirilene, nefazodone,

penfluridol, pimozide, and spiperone (A). Histogram showing quantification of red/green fluorescent ratio as fold change relative to control (B). Data are presented as

mean ± SD from three independent experiments, each performed in triplicate. **, Student’s T-test p < 0.01; ***, Student’s T-test p < 0.001.

properties and clinical use, we investigated the CADs properties
of psychotropic drugs used in our screening evaluating their
chemical structure, logP and pKa in comparison to the well-
known CADs compounds amiodarone, chlorpromazine and
chloroquine (Supplementary Table 2) (46, 47). Since there is not
a clear CADs classification based on chemical properties, we
set LogP and pKa cut off as suggested by Muehlbacher (36).
Overall, 14 psychotropic drugs out of 26 were classified as CADs.
Five out of seven most cytotoxic drugs in MCF7 (IC50 < 15
µmol/L) were CADs, whereas spiperone and nefazodone, were
excluded from CAD classification just because of a LogP or
pKa value below the selected cut off (Supplementary Figure 4,
Supplementary Table 2). Since CADs were represented also
among drugs without cytotoxic activity (e.g., haloperidol,
iloperidone, or ritanserin), cationic amphiphilic characteristics
contribute strongly, but are not sufficient to confer significant
antitumoral activity to psychotropic compounds.

Psychotropic Drugs Cause Mitochondrial
Membrane Depolarization
CADs can readily pass through phospholipids bilayers,
particularly through membranes with a large transmembrane
potential such as the mitochondrial inner membrane. They

readily accumulate in the mitochondrial matrix, causing
mitochondrial membrane depolarization (45, 48, 49). Therefore,
we evaluated the alteration in mitochondrial membrane potential
(1ψm) as a function of drug treatment, using the lipophilic
cationic dye JC-1 (50). MCF7 cells were treated, for 16 h, with
5 µmol/L of each drug or with FCCP, used as positive control.
A significant reduction in 1ψm was observed after treatment
with ebastine, fluoxetine, penfluridol, pimozide, nefazodone and
fluspirilene, but not with spiperone (Figure 5).

Psychotropics Drugs Induce Vacuolization
and Increase Acidic Compartments
CADs are known to concentrate in acidic cell compartments
because the retro-diffusion of the protonated form is inefficient
(mechanism known as ion-trapping or pH partitioning).
If sufficiently intense, this sequestration results in the
osmotic formation of numerous large, fluid-filled vacuoles
already after short term exposure to drugs (46). These
molecules are collectively referred to as lysosomotropic
agents, for their propensity to concentrate into lysosomes
(51). To test the hypothesis that cytotoxic psychotropic
drugs concentrate in MCF7 cells by this mechanism, MCF7
were cultured in the presence of 10% FBS and treated with
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FIGURE 6 | Vacuolar structures formation after treatment of MCF7 cells with psychotropic drugs. Morphological alterations associated with psychotropic drugs

treatment in MCF7 were investigated after 4 h exposure by phase contrast microscopy. Representative images of cells treated with the negative control DMSO,

ebastine, fluoxetine, fluspirilene, nefazodone, penfluridol, pimozide and spiperone and rapamycin alone or with bafilomycin A1 and 3-MA (A). Histogram showing

quantification of vacuoles as fold change relative to control (B). Data are expressed as the mean ± SD of a representative experiment out of three independent

experiments performed in triplicate. *p < 0.05; **, Student’s T-test p < 0.01; ***, Student’s T-test p < 0.001.

drugs alone or in the presence of the V-ATPase inhibitor
bafilomycin A1 or class III PI3K inhibitor 3-MA (Figure 6,
Supplementary Figure 5). Fluoxetine induced a strong vacuolar
morphology already 6 h after treatment as previously reported
(46) (Supplementary Figure 5A); a less prominent, but still
significant increase of vacuolar structures was also observed
after treatment with fluspirilene, ebastine, pimozide, penfluridol
and nefazodone, whereas increase of vacuoles was not observed
with spiperone (Supplementary Figure 5). The mTOR inhibitor
rapamycin used as a positive control of autophagy induced a
mild vacuolar morphology.

In the presence of bafilomycin A1, a significant reduction
of vacuoles formation was observed with fluoxetine, ebastine,
fluspirilene, pimozide, and nefazodone, suggesting that these
drugs require an acidic environment to accumulate and induce
vesicles formation; on the contrary, a higher number of vesicles
was observed after treatment with penfluridol and spiperone,

suggesting that these drugs do not require pre-existing acidic
compartments to induce vacuolization although they can cause
the formation of autophagosome structures that accumulate after
inhibition of autophagosome-lysosome fusion and autolysosome
acidification by bafilomycin A1 (Figure 6). The autophagosome
nature of vacuoles induced by all these compounds was
supported by the reduction of the number of vesicles in the
presence of the class III PI3K inhibitor 3-MA (Figure 6).

The nature of the vacuoles induced by psychotropic drugs was
further investigated by staining MCF7 cells with the LysoTracker
dye, which is a highly soluble small molecule that is retained
in acidic subcellular compartments, such as late endosomes
and lysosomes, whose presence is an indirect indication for
autophagic activity (52). Although a transient increase of pH
in autophagosome-lysosome structures was observed after short
term treatment with penfluridol (Figure 6B), LysoTracker dye
staining clearly shows a strong increase of acidic compartments
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FIGURE 7 | Psychotropic drugs induce acidic compartment formation perturbing lysosomal and autophagic functioning. Effects of psychotropic drugs on intracellular

acidic compartments were evaluated by Lysotracker Deep Red staining after 6 and 16 h of treatment. Nuclei were stained using Hoechst 33342. Pictures were

acquired by fluorescence microscopy (magnification: 20×). Representative images of cells treated with DMSO, negative control, rapamycin, positive control, ebastine,

fluoxetine, fluspirilene, nefazodone, penfluridol, pimozide, and spiperone (A). Graphs showing quantification of red lysotracker staining/blue nuclei staining ratio as fold

change relative to negative control (B). Data are expressed as the mean ± SD of a representative experiment out of three independent experiments performed in

triplicate. *p < 0.05; **, Student’s T-test p < 0.01; ***, Student’s T-test p < 0.001; ****p < 0.0001.

after overnight treatment with all drugs tested, consistent with
increased autophagosome-lysosome acidic structures (Figure 7,
Supplementary Figure 6).

Spiperone and Penfluridol Induce
Autophagy by Modulating mTOR and
AMPK Pathways
The increase of acidic structures can be a consequence
of both autophagy induction and reduced turnover in
the autophagosomal compartment caused by impaired
autophagosome-lysosome fusion and/or lysosomal function.
In order to clarify this issue, we investigated the main
regulators of autophagy: mTOR pathway (represented by
phosphorylations in 70S6K T389 and ribosomal protein S6
S235/236) and AMPK activation (Figure 8). Starvation, a
strong inducer of autophagy, was used as positive control.

A strong inhibition of mTOR pathway, comparable to that
obtained with starvation, was observed after treatment with
penfluridol, whereas a milder but significant downregulation
of the pathway was detected with spiperone and, to a lesser
extent, with the other compounds (Figures 8A–C), since
S6 Ser 235/236 phosphorylation might also be modulated
by kinases different from P70S6K (53). Notably, a partial
delocalization of mTOR from the lysosomal membrane,
further supporting mTOR inhibition, was observed after
treatment with both penfluridol and spiperone (Figure 8G,
Supplementary Figure 7).

In agreement with mTOR dislocation, a significant increase of
AMPK phosphorylation in the activation site T172, comparable
to that induced by starvation, was observed after treatment
with penfluridol and spiperone. On the contrary, AMPK
phosphorylation was unaffected or slightly reduced after
treatment with all other compounds (Figures 8A,D).
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FIGURE 8 | Effect of psychotropic drugs on mTOR and AMPK pathways and autophagic flux. Western blot analysis of MCF7 cells after 16 h treatment with

psychotropic drugs. Lysates were analyzed for p-AMPKα T172, AMPKα, p-P70S6K T389, P70S6K, P-S6 S235/236, S6, LC3B, and GAPDH (A). Histogram showing

quantification of P70S6K (B), S6 (C) and AMPK (D) phosphorylation normalized on total protein P70S6K, S6 and AMPKα, respectively. WB (E) and histogram (F)

showing the relative expression of LC3B II/I upon chloroquine treatment. Densitometric analyses are expressed as the mean ± SD of three independent experiments

performed in triplicate. * Student’s T-test p < 0.05 **, Student’s T-test p < 0.01; ***, Student’s T-test p < 0.001, ****p < 0.0001. Delocalization of mTOR from the

lysosomal membrane was evaluated in MCF7 after 16 h treatment with psychotropic drugs. mTOR was stained using mTOR primary antibody and Alexa Fluor 488

secondary antibody (green). Lysosomes were stained using LAMP1 primary antibody and Alexa Fluor 536 secondary antibody (red). Representative images of DMSO,

negative control, ebastine, penfluridol, and spiperone (G).

The conversion of the cytosolic LC3B form, LC3B-I, into the
faster migrating, phosphatidylethanolamine-conjugated, LC3B-
II form, a marker of autophagy induction (54) was significantly
enhanced in cells treated with penfluridol, spiperone and
pimozide (Figures 8E,F).

Psychotropic Drugs With Cationic
Amphiphilic Properties Cause Lysosomal
Disruption
CADs can accumulate into lysosomes and impair lysosomal
enzymatic activities (44, 55). It has also been shown that several
antipsychotic and antidepressant drugs extensively accumulate in
lysosomes and inhibit acid sphingomyelinase and phospholipases
(36, 56). Lysosomes are a major site of cellular membranes
degradation and complex lipids metabolism, therefore the

hallmark of drug-induced lysosomal impairment is accumulation
of phospholipids (42, 57). Therefore, we investigated whether
the antitumoral activity of psychotropic drugs was associated
with lysosomal impairment by incubating cells in the presence
of phospholipids conjugated to fluorescent dye. After incubation
for 24 h with LipidTOX, MCF7 cells treated with ebastine,
fluspirilene, fluoxetine, pimozide and penfluridol showed a
strong increase of phospholipids aggregates; on the contrary,
this phenotype was not observed after treatment with non-CADs
spiperone and nefazodone and with the inducer of autophagy
rapamycin (Figures 9A,B).

Drugs with cationic amphiphilic properties accumulating
into lysosomes can also induce LMP. This phenomenon can
lead to the release of lysosomal enzymes inside the cytoplasm
and possibly cell death (17). Galectin-1 is a small protein
normally located in the cytoplasm and in the nucleus, that
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FIGURE 9 | Treatment with psychotropic drugs induces phospholipidosis in MCF7 cells. Accumulation of phospholipids in MCF7 cell line was evaluated after 16 h

treatment with drugs using LipidTox green staining. Nuclei were stained using Hoechst 33342. Pictures were acquired by fluorescence microscopy (magnification:

20×). Representative images of cells treated with DMSO, negative control, ebastine, fluoxetine, fluspirilene, nefazodone, penfluridol, pimozide, spiperone, and

rapamycin (A). Histogram showing quantification of Green LipidTox staining/blue nuclei staining ratio as fold change relative to control (B). Data are presented as

mean ± standard deviation from three independent experiments, each performed in triplicate. ***, Student’s T-test p < 0.001.

accumulates and forms complexes to the lysosomal membrane
in case of lysosomal membrane damage and LMP (58).
To evaluate lysosomal membrane damage in response to
psychotropic drug treatment we investigated galectin-1 complex
formation by immunofluorescence. The formation of galectin-
1 complexes was observed with all the drugs tested, apart from
nefazodone, indicating that cytotoxic psychotropic drugs can
induce lysosomal membrane damage (Figures 10A,B).

Psychotropic Drugs Induce Different Types
of Cell Death
To assess if apoptosis is involved in psychotropic drugs-
induced cell death we performed PI/Annexin V staining in
MCF7 cells. FACS analysis at different time points showed an
increase in necrosis cells with all the drugs but a significant
induction of apoptosis after 48 h of treatment with the sole
spiperone (Supplementary Figure 8). These data were further
confirmed by viability rescue experiments with a pan caspase
inhibitor zVAD-fmk. As shown in Figure 11A, zVAD-fmk
significantly rescued cell death only in cells treated with
spiperone and staurosporine, whereas it was ineffective with the
other drugs.

Since apoptosis is not the primary mechanism of death
elicited by cytotoxic psychotropic drugs, except for spiperone,
we investigated the role of autophagy by treating cells with
the autophagy inhibitor 3-MA (59). As shown in Figure 11B,
3-MA co-treatment significantly rescued cell viability in cells
treated with rapamycin and in cells treated with spiperone and
pimozide. Conversely, 3-MA enhanced penfluridol cytotoxicity,
whereas it did not show any effect in combination with
ebastine, fluoxetine, nefazodone and fluspirilene. However, since
it was reported that in particular conditions 3-MA could
induce autophagy (59) we performed western blot analysis to
investigate the conversion of the cytosolic LC3 I to II form in
MCF7 cells treated with spiperone and penfluridol alone or in
combination with 3-MA (Supplementary Figure 9). Our data
indicate that in our experimental set-up 3-MA does not induce
autophagy, on the contrary it is effective in suppressing LC3
II conversion.

To further investigate the mechanism of the observed
cytotoxicity we assessed whether inhibition of lysosomal
cathepsins B and L rescued cell viability in MCF7 cells, for this
purpose we performed experiments with the inhibitor CA-074
me (60). As displayed in Figure 11C CA-074 me significantly
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FIGURE 10 | Treatment with psychotropic drugs induced formation of galectin-1 complexes. Formation of galectin-1 complexes in MCF7 after 16 h treatment with

psychotropic drugs was observed by fluorescence microscopy (magnification: 63X). Galectin-1 was stained with anti galectin-1 primary antibody and Alexa Fluor 563

secondary antibody. Nuclei were stained using DAPI. Representative images showing cells treated with psychotropic drugs: DMSO, ebastine, fluoxetine, fluspirilene,

nefazodone, penfluridol, pimozide, and spiperone (A). Histogram showing the number of cells presenting galectin-1 complexes/total number of cells ratio as fold

change relative to control (B) Data are presented as mean ± standard deviation from three independent experiments, each performed in triplicate. ****p < 0.0001.

rescued cell death induced by ebastine, penfluridol, pimozide and
spiperone, while a mild but not significant effect was observed in
cells co-treated with fluoxetine.

Additionally, in order to clarify if oxidative stress was
involved in psychotropic drugs-induced cell death, we co-
treated MCF7 cells with the antioxidant NAC, however
no significant effect was observed in terms of viability
rescue (Figure 11D). With cyclosporin A, an inhibitor of the
mitochondrial permeability transition pore (mPTP), an additive
cytotoxic effect was observed with all drugs tested (Figure 11E).
Cyclosporin A has been reported to be a broad-spectrum
multidrug resistance modulator (61) and this activity possibly
induces psychotropic drugs retention resulting in a boost
of cytotoxicity.

DISCUSSION

Although cancer treatment has witnessed remarkable progress
over the past few decades, cancer remains a major threat to
humans, with total cure remaining elusive. Repurposing of well-
characterized and well-tolerated drugs for cancer therapy has
emerged as an attractive alternative for a long and costly process
of drug development (23). Psychotropic drugs are revealing
promising candidates for drug repositioning in cancer. Although
several in vitro and in vivo models reported the efficacy of this
family of drugs in reducing cancer cell viability and tumor growth
(30, 32, 62), the pharmacological properties underpinning the
possible clinical application of psychotropic drugs for cancer
therapy remain poorly understood. In this study we investigated
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FIGURE 11 | Effect of co-treatment of psychotropic drugs and the pan-caspase inhibitor zVAD-fmk, the autophagy inhibitor 3-MA, the cathepsin inhibitor CA-074 me,

the antioxidant NAC or the inhibitor of mitochondrial membrane depolarization cyclosporin A. MCF7 cells were treated for 72 h with vehicle or psychotropic drugs (all

10 µmol/L except penfluridol, 5 µmol/L) alone, or in combination with zVAD-fmk, 5 µmol/L (A), 3-MA, 2.5 mmol/L (B), CA-075 me, 5 µmol/L (C), NAC, 5 mmol/L (D),

cyclosporin A, 5 µmol/L (E) Data show mean ± SD of at least three independent experiments performed in triplicate. The graphs show cell viability as the percentage

of viable cells vs. control. **, Student’s T-test p < 0.01; ***, Student’s T-test p < 0.001.

a large panel of psychotropic drugs for their potential anti-
tumoral activity evaluating their cytotoxic effect in six cell lines
derived from three different tumor types. By using stringent
screening conditions, we identified only a few compounds
that significantly reduced cell viability at clinically relevant
concentrations. These were represented by the antipsychotics
penfluridol, pimozide, fluspirilene, nefazodone, and spiperone,
the antidepressant fluoxetine and the antihistamine ebastine.
Except for spiperone, whose cytotoxicity was negligible in GB,
all the other compounds showed cytotoxic activity in all cell
lines tested.

The comparable efficacy, in three different tumor types, of
compounds with clinically different indications allows us to
speculate a common mechanism of action independent from
the phenotypic and molecular profile of the tumor and not
associated with the conventional pharmacological properties and
clinical use of these compounds. This hypothesis is corroborated
by the negligible cytotoxicity observed with other drugs with
superimposable biogenic amine receptors targeting, by the lack

of rescue of cell viability after co-treatment with biogenic amines
and by the drug concentration necessary to observe a biologic
effect, that it is at least one order of magnitude higher than that
needed for their conventional pharmacological targets (63).

Based on the analysis of structure and chemical-physical
properties, most psychotropic compounds with a significant
cytotoxic activity can be classified as CADs (36, 43). It is
well-demonstrated the formation of cytoplasmic vesicles in
cells exposed to CADs results from extensive ion-trapping-
based accumulation of lysosomotropic weak bases in acidic
compartments (36, 55). Vacuoles formation, inhibited by the
disruption of the lysosomal V-ATPase, was observed after short
term exposure of MCF7 cells to CADs fluoxetine, ebastine,
fluspirilene, pimozide but also to nefazodone, that is not
formally a CADs but might display some of their features.
Accumulation of vacuoles in the presence of bafilomycin A1 was
instead observed after treatment with penfluridol and spiperone,
suggesting that the formation of vesicles by these drugs does
not necessarily depend on ion-trapping in acidic compartments,
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but is favored by the block of lysosomal activity. The acidic
autophagosome nature of these vesicles was confirmed by the
requirement of class III PI3K for their formation and by the
positive staining with the lysosomotropic dye LysoTracker.
Notably, both spiperone and penfluridol, that induced the
formation of autophagosome structures independently from the
ion-trapping mechanism are likely true activator of autophagy,
as demonstrated by stimulation of AMPK and LC3B conversion
and downregulation of mTOR pathway observed in MCF7 cells.

Although lysosomotropic CADs can increase lysosomal pH
after compound sequestration which could lead to suboptimal
conditions for lysosomal digestion (64, 65), lysosomal pH
increase may be a transient change and pH could be restored
after extended exposure to lysosomotropic compounds (47, 66,
67). The increased LysoTracker dye staining we observed after
overnight treatment with drugs indicates a pH recovery after
compound sequestration and reflects the increased lysosomal
volume, suggestive of the occurrence of lysosome biogenesis
induced by lysosomotropic drugs (47, 68). Moreover, drug
interactions with the lysosomal lipid bilayer and membrane
proteins could influence the dynamics of membrane fusion
and/or fission, thereby affecting trafficking steps and lysosomal
egress (67), causing a reduction in autophagic flux and
lysosomal enlargement.

Due to their chemical structure, CADs can accumulate
in acidic lysosomes (46) and incorporate to luminal
membranes where they function as effective inhibitors of
acid sphingomyelinase and other lysosomal lipases (36, 44).
At therapeutically relevant concentrations, CADs have been
shown to cause the lysosomal accumulation of various lipid
species, including sphingomyelin, phosphatidylethanolamine,
phosphatidylserine, phosphatidylcholine, lysophosphatidic acid,
and cholesterol, with induction of phospholipidosis (42, 57). In
our experimental model, CADs ebastine, fluspirilene, fluoxetine
and pimozide, that very rapidly accumulated in cells by ion-
trapping, caused a strong increase of phospholipids aggregates.
Our observations are supported by papers reporting the capacity
of these compounds to induce phospholipidosis. Gonzalez-
Rothi in 1995 first described the complication of pulmonary
phospholipidosis in a patient with manic-depressive illness
after treatment with fluoxetine (69); penfluridol, pimozide,
and fluspirilene have been reported in a screening of drugs
capable to inhibit sphingomyelinase and were found to induce
phospholipidosis in neuroglioma H4 cells (36, 44), whereas
ebastine was identified by electron microscope screening to
evaluate chemicals for drug-induced phospholipidosis (70).
Our results demonstrate that, also in cancer cells, ebastine,
fluspirilene, fluoxetine and pimozide act as typical CADs,
impairing lysosomal activity.

Some compounds investigated in this study, including the
antipsychotics diphenylbutylpiperidines fluspirilene, penfluridol,
and pimozide and antidepressants such as fluoxetine have been
previously reported as autophagy inducers in neurons and in
different cancer cell types such as BC and GB by affecting
a variety of targets (31, 71–73). Our study shows that the
cytotoxic activity of most of these compounds is essentially
based on their common cationic amphiphilic properties and

their capacity to perturb acidic intracellular compartments.
Moreover, although all investigated drugs caused the formation
of acidic structures, apparently inducing the autophagic flux,
only spiperone, penfluridol and, potentially, pimozide can be
considered true autophagy activators. Overall, these data raise
a critical issue related to clinical use of these compounds
as autophagy enhancers, but they also reveal interesting
therapeutic implications for compounds that transiently increase
upstream autophagic flow while compromising downstream
lysosomal function.

The lysosome is emerging as a driving force in the progression
of numerous human cancers, in which enhanced function of the
autophagy–lysosome system enables efficient nutrient scavenging
and growth in nutrient-poor microenvironments, promote the
metastatic potential and treatment resistance (11). But lysosomal
activation in aggressive cancers can lead to alterations in
lysosomal structure and function, which, paradoxically, renders
cancer cells more sensitive to lysosomal destabilization (5, 74).
This frailty can be targeted by lysosomotropic compound that
may have an antitumor effect preferentially killing the more
sensitive cancer cells by inducing dysregulation of lysosomal lipid
metabolism and LMP with release into the cytosol of cathepsins,
potent inducers of cell death (17, 75, 76). In our study, we
observed increased Lysotracker staining, suggestive of lysosomal
swelling that is considered a typical condition preceding LMP
(17, 77–79) and galectin-1 complexes, a surrogate marker of
lysosomal membrane damage (58), suggesting a possible role of
lysosomes in cancer cell death. This was confirmed for ebastine,
penfluridol, pimozide, and fluoxetine, whose cytotoxic activity
was partially rescued by inhibitor of cathepsins B and L but not
by treatment with both apoptosis or autophagy inhibitors.

Inhibition of apoptosis and autophagy were also ineffective in
reducing cell death induced by nefazodone and fluspirilene and
further experiments are required to clarify the mechanisms of cell
death induced by these drugs.

Notably, while inhibition of autophagy significantly
rescued pimozide and spiperone cytotoxicity, it further
increased cell death induced by penfluridol, the compound
that demonstrated the highest cytotoxicity in all cell lines
tested. The strong antitumoral activity of penfluridol may be
due to its ability to induce both ADCD and LMP. Most of
the known compounds that affect autophagy in neoplastic
cells are either inducers or inhibitors of this process (80, 81).
However, molecules that can modulate autophagy in a dual
mode, by both inducing and inhibiting the process, seem
to represent a novel and effective strategy for anticancer
therapy (82, 83).

Finally, all psychotropic compounds with cationic
amphiphilic properties caused a significant reduction in 1ψm.
Since oncogenic activation leads to increased mitochondrial
metabolism and higher 1ψm compared to that of non-
cancer cells (20) and experimental evidence demonstrates
that irreversible mitochondrial membrane depolarization
can induce cell death also in apoptotic resistant cells (84),
CADs appear excellent candidates for mitochondrial targeting
in cancer, as they can easily diffuse in tumor tissues and
interact with negatively charged mitochondrial membranes
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(20, 45, 49). Since in our cell line model cytotoxicity of
psychotropic drugs was not mediated by ROS and thiols
oxidation whereas apoptosis has been demonstrated only in
cells treated with spiperone, studies are underway to explore the
molecular mechanisms underlying CADs induced mitochondrial
membrane depolarization and its role in inducing cancer
cell death.

In addition to acute cytotoxicity, observed, in vitro, at lower
micromolar concentrations, in vivo psychotropic drugs with
cationic amphiphilic properties can also impair cancer cell
metabolism and sensitize tumors to chemotherapy at plasma
concentrations achieved with standard therapeutic regimens
(85, 86). Suggestive of their efficacy in human clinical setting,
epidemiologic studies have reported a reduced incidence of
glioma and CRC among users of tricyclic antidepressants (27),
a lower CRC risk under therapy with fluoxetine (26, 87)
and an association between post-diagnostic use of cationic
amphiphilic antihistamines and reduced cancer mortality as
compared with similar use of antihistamines that do not classify
as CADs (88).

In conclusion, the data presented above identify a subset
of psychotropic drugs as putative anticancer agents and
open a feasible, safe, and economically sound possibility
to test the clinical anticancer efficacy of this therapeutic
class of compounds. In particular, the cytotoxicity of
psychotropic drugs with cationic amphiphilic structures
relied on simultaneous mitochondrial and lysosomal
disruption and induction of cell death that not necessarily
requires apoptosis. Since dual targeting of lysosomes and
mitochondria constitutes a new promising therapeutic
approach for cancer, particularly those in which the apoptotic
machinery is defective, these data further support their
clinical development.
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ABSTRACT
A series of analogues of Amb639752, a novel diacylglycerol kinase (DGK) inhibitor recently discovered by
us via virtual screening, have been tested. The compounds were evaluated as DGK inhibitors on a, h, and
f isoforms, and as antagonists on serotonin receptors. From these assays emerged two novel compounds,
namely 11 and 20, which with an IC50 respectively of 1.6 and 1.8 mM are the most potent inhibitors of
DGKa discovered to date. Both compounds demonstrated the ability to restore apoptosis in a cellular
model of X-linked lymphoproliferative disease as well as the capacity to reduce the migration of cancer
cells, suggesting their potential utility in preventing metastasis. Finally, relying on experimental biological
data, molecular modelling studies allow us to set a three-point pharmacophore model for DGK inhibitors.
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1. Introduction

Diacylglycerol kinases (DGKs) are a large family of enzymes that
share a common catalytic activity: the phosphorylation of diacyl-
glycerol (DAG) to phosphatidic acid (PA). Remarkably, both the
substrate (DAG) and the product (PA) of the DGK-catalysed reac-
tion, are bioactive lipids that can act as second messengers1. DGK
activity consequently serves as a switch to simultaneously dampen
DAG-mediated signals and boost PA-mediated signals2. Ten mam-
malian DGK isoforms (a, b, c, d, e, f, g, h, i, and r) have been iden-
tified and divided into five groups (type I–V) according to their
structural features3,4. The expression of these isoforms varies
depending on the cell type. Among the 10 isoforms, the a isoform
is among the most studied and characterised. This kinase is highly
expressed in the brain, spleen, and thymus and, along with h iso-
form, in the bone marrow. This enzyme is also highly expressed in
T-lymphocytes, where it acts together with DGKf as negative
regulator of the T-cell receptor (TCR) response, and a mediator of
IL-2 mediated proliferation3,5. The biological relevance of DGKa is
best demonstrated in patients with X-linked lymphoproliferative
disease (XLP-1), who experience life-threatening, uncontrolled
accumulation of CD8þ T cells in response to the Epstein–Barr virus
(EBV) infection6. In those patients, germline mutations of the
adaptor protein SAP (SH2D1A) perturb TCR signalling and render
DGKa constitutively active7. Deregulated DGKa activity renders

patient-derived lymphocytes resistant to reactivation-induced cell
death (RICD). Thus, antigen-activated lymphocytes accumulate in
lymphonodes and liver, resulting in severe immunopathology8.
Importantly, DGKa inhibitors restore RICD sensitivity in vitro and
in vivo, thus avoiding immunopathology and suggesting a puta-
tive therapeutic use of those molecules in XLP-19.

Apart from T-cell regulation, DGKa also plays a role in cancer,
mediating numerous aspects of cancer cell progression including
survival10,11, migration and invasion of cancer cells12–14. In particu-
lar, it has been reported that DGKa is over expressed in hepatocel-
lular carcinoma15, and melanoma cells11 while other reports
suggested that the growth of colon and breast cancer cell lines
was significantly inhibited by DGKa-siRNA16 and DGKa/atypical
PKC/b1 integrin signalling pathway was crucial for matrix invasion
of breast carcinoma cells17. In addition, expression is also higher
in lymphonodal metastasis than in breast and gastric original
tumour18,19. Finally, knock down of DGKa impairs glioblastoma
tumorigenesis20,21.

For all these reasons, the identification of strong and selective
DGKa inhibitors, it is an important field of research. To date, only
a handful of two-digit micromolar inhibitors of DGKa have been
identified, but only three were the most characterised, namely,
R59949, R59022, and ritanserin (Figure 1).

In our assay system, R59949 and R59022 have an IC50 of 11
and 20 mM, respectively9. Their efficacy has been evaluated in vivo
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studies on mice, and is limited by their rapid clearance
(t1/2¼�2 h)22. Furthermore, these two inhibitors are also able to
target different isoforms of DGK, in particular R59022 acts on type
III and V (e e h), while R59949 on type I and II (c, d e j)23,24 and a
study conducted by Boroda et al. recently demonstrated their
strong antagonistic activity on 5-HT2 receptors (R59022 IC50
5HT2A¼2.2 nM; R5994 IC50 5HT2A¼9.2 nM)25.

A search on ChEMBL database26 (https://www.ebi.ac.uk/
chembl/) show how these two molecules have activity at the
same range of concentration with other biological targets, behav-
ing like a sort of promiscuous ligands. Ritanserin, a well-known
serotoninergic antagonist, is structurally similar to R59022, differ-
ing for an H-F isosteric substitution on a phenyl ring. Despite this
small modification, Boroda et al. showed that ritanserin was a
DGKa inhibitor (IC50¼15 mM) more potent than R59022 and
R59949 and with a better pharmacokinetic profile (t1/2¼40 h in
human)25. However, the comparison of ritanserin IC50 as serotonin
antagonist and as DGKa inhibitor, 0.9 nM and 15,000 nM, respect-
ively, reveal that ritanserin is much a powerful serotonin antagon-
ist than a DGK inhibitor. In addition, ritanserin is also a potent
inhibitor on dopaminergic receptors with an IC50 of 69 nM

27.
Due to these drawbacks, at the beginning, in order to elimin-

ate the strong serotoninergic activity of R59949, we reasoned to
replace its protonable nitrogen atom, which at physiologically pH
mimics the amino group of serotonin, with a carbon atom. We
decided therefore to synthesise compound 1 (Figure 2) (see sup-
porting information for its synthesis and a complete characterisa-
tion) and to test it as DGKa inhibitor.

Interestingly, the compound was totally devoid of inhibitory
activity on the enzyme, showing the importance of the basic
nitrogen atom not only for the anti-serotoninergic activity, but
also for the interaction with the kinase. With this in mind, we
recently used an in-silico approach based on chemical homology
with the two commercially available DGKa inhibitors R59022 and
R59949 using the programmes ROCS28 and EON29. From this
study, we identified a compound, Amb639752 (Figure 2), featuring
a lower IC50 for DGKa than ritanserin (IC50¼17 mM), a better select-
ivity for the a-isoform and devoid of anti-serotoninergic activity.
Along with CU-3, which features an IC50 of 0.6 mM on DGKa30 but
contains a reactive Michael acceptor31, Amb639752 is the most
effective pharmacological tool available to study DGKa9. In this
manuscript, we report the structure–activity studies on
Amb639752 and, in combination with data on ritanserin, the gen-
eration of a pharmacophore model for this class of compounds,
which could be useful for the identification of other potential
DGKa inhibitors.

2. Methods

2.1. Chemistry procedures

Commercially available reagents and solvents were used without
further purification. Toluene were distilled immediately before use

from Na/benzophenone under a slight positive atmosphere of dry
nitrogen. Dichloromethane was dried by distillation from P2O5 and
stored on activated molecular sieves (4 Å). When needed the reac-
tions were performed in flame- or oven-dried glassware under a
positive pressure of dry nitrogen. Melting points were determined
in open glass capillary with a Stuart scientific SMP3 apparatus and
are uncorrected. All compounds were checked by IR (FT-IR
THERMO-NICOLET AVATAR), 1H and 13C APT (JEOL ECP 300MHz
spectrometer), and mass spectrometry (Thermo Finningan LCQ-
deca XP-plus, San Jose, CA) equipped with an ESI source and an
ion trap detector. Chemical shifts are reported in parts per million
(ppm). Flash column chromatography was performed on silica gel
(Merck Kieselgel 60, 230–400 mesh ASTM, Kenilworth, NJ). Thin
layer chromatography (TLC) was carried out on 5� 20 cm plates
with a layer thickness of 0.25mm (Merck Silica gel 60 F254,
Kenilworth, NJ). When necessary they were developed with
KMnO4 reagent. Purity of tested compounds was established by
elemental analysis. Elemental analysis (C, H, N) of the target com-
pounds is within ±0.4% of the calculated values, confirming
�95% purity.

2.1.1. Preparation of 2-chloro-1-(2,6-dimethyl-1H-indol-3-yl)ethan-
1-one (5)
In a Schlenk tube, under nitrogen, 2,6-dimethyl-1H-indole (3)
(0.20 g, 1.38mmol, 1 eq) was dissolved in 4mL of dichloroethane
dry and 0.25mL of DBU (1.66mmol, 1.2 eq) were added. The
resulting solution was heated at 90 �C. When reached this tem-
perature, chloroacetyl chloride (4) (0.12mL, 1.52mmol, 1.1 eq) was
added. The reaction was stirred for 30min, then solvent was
evaporated and the crude purified by column chromatography
using PE/EtOAc 7:3 and PE/EtOAc 5:5 as eluants to give 270mg of
product as violet solid: yield 90%; m.p. 243.7–244.2 �C; 1H NMR
(300MHz, DMSO-d6) d 11.88 (br s, NH), 7.85 (d, J¼ 7.9 Hz, 1H), 7.18
(s, 1H), 6.99 (d, J¼ 8.0 Hz, 1H), 4.89 (s, 2H), 2.68 (s, 3H), 2.39 (s,
3H). MS (ESI) m/z: 222 [MþH]þ.

2.1.2. Preparation of tert-butyl 4-(2-(2,6-dimethyl-1H-indol-3-yl)-2-
oxoethyl)piperazine-1-carboxylate (6)
Under nitrogen, 200mg of 5 (0.90mmol, 1 eq) was dissolved in
toluene dry, then N-Boc-piperazine (0.17 g, 0.90mmol, 1 eq),
K2CO3 (0.32 g, 2.25mmol, 2.5 eq), and KI (0.015 g, 0.09mmol,

Figure 1. Three of the most studied DGKa inhibitors.

Figure 2. Structures of the deaza analogue of R59949 and Amb639752.
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0.1 eq) were added. The reaction was heated at 80 �C overnight.
Solvent was evaporated and the crude was purified by column
chromatography using PE/EtOAc 4:6 and PE/EtOAc 2:8 as eluants
to give 215mg of product as yellow amorphous solid: yield 63%;
1H NMR (300MHz, CDCl3) d 8.52 (br s, NH), 7.77 (d, J¼ 8.2 Hz, 1H),
7.12 (s, 1H), 7.08 (d, J¼ 8.0 Hz, 1H), 3.79 (s, 2H), 3.47–3.43 (m, 6H),
2.75 (s, 3H), 2.64 (br s, 2H), 2.44 (s, 3H), 1.47 (s, 9H). IR (KBr): 3190,
2964, 1698, 1413, 1417, 1364, 1126, 806 �max/cm

�1. MS (ESI) m/z:
372 [MþH]þ.

2.1.3. Preparation of 1-(2,6-dimethyl-1H-indol-3-yl)-2-(piperazin-1-
yl)ethan-1-one (7)
Two hundred and fifteen milligrams of 6 (0.58mmol, 1 eq) were
dissolved in dichloromethane dry. The resulting solution was
cooled at 0 �C and 0.69mL of trifluoroacetic acid (9.28mmol,
16 eq) was added. After 3 h, the reaction was worked up adding
NaOH 2 M solution until pH ¼ 12. Then, NaCl solid was added
and the solution was extracted with THF (x2). The combined
organic phases were dried on sodium sulphate. After evaporation
of the solvent, the crude was purified by column chromatography
using EtOAc/MeOH 9:1 and MeCN/NH3 9:1 as eluants to give
103mg of the product as yellowish solid: yield: 65%; m.p.:
232.9–233.6 �C; 1H NMR (300MHz, DMSO-d6) d 11.79 (br s, NH),
7.85 (d, J¼ 7.9 Hz, 1H), 7.15 (s, 1H), 6.95 (d, J¼ 8.2 Hz, 1H), 3.83(br
s, 4H), 3.62 (s, 2H), 2.86 (br s, 4H), 2.67 (s, 3H), 2.38 (s, 3H); IR (KBr):
3446, 3181, 2813, 1634, 1455, 1330, 821 �max/cm

�1; MS (ESI) m/z:
272 [MþH]þ.

2.1.4. General procedure for the synthesis of final compounds
8, 11–22
1-(2,6-Dimethyl-1H-indol-3-yl)-2-(piperazin-1-yl)ethan-1-one (7)
(1 eq) was dissolved in dichloromethane dry. To the resulting solu-
tion EDCI (1 eq), TEA (2 eq), DMAP (0.1 eq) and the appropriate
carboxylic acid (1 eq) were sequentially added. The reaction was
stirred under nitrogen at room temperature overnight.
Evaporation of the solvent gave a crude which was directly puri-
fied by column chromatography.

2.1.5. 2-(4-Benzoylpiperazin-1-yl)-1-(2,6-dimethyl-1H-indol-3-yl)e-
than-1-one (8)
Yellow solid; yield 29%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 213.8–214.3 �C. 1H NMR (300MHz, DMSO-d6) d 11.72 (br s,
NH), 7.85 (d, J¼ 8.2 Hz, 1H), 7.46–7.40 (m, 5H), 7.15 (s, 1H), 6.96 (d,
J¼ 7.9 Hz, 1H), 3.67 (br s, 4H), 3.18 (br s, 2H) 2.67 (s, 3H), 2.61–2.56
(m, 4H), 2.38 (s, 3H); 13C NMR (75MHz, DMSO-d6) d 192.8, 169.5,
144.7, 136.5, 135.7, 131.5, 130.0, 129.0, 127.5, 125.1, 123.4, 121.2,
112.9, 111.6, 66.9, 53.2, 53.1, 21.7, 15.7; IR (KBr) 3189, 2990, 2828,
1609, 1446, 1282, 807 �max/cm

�1. MS (ESI) m/z: 374 [M–H]þ. Anal.
Calcd. for C23H25N3O2: C, 73.57; H, 6.71; N, 11.19; found C, 73.76;
H, 6.94; N, 10.85.

2.1.6. 2-(4-(4-Chlorobenzoyl)piperazin-1-yl)-1-(2,6-dimethyl-1H-
indol-3-yl)ethan-1-one (11)
Yellow solid; yield 33%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 240.7–241.3 �C; 1H NMR (300MHz, DMSO-d6) d 11.70 (br s,
NH), 7.85 (d, J¼ 7.9 Hz, 1H), 7.50 (br d, AA’XX’, 2H), 7.42 (br d,
AA’XX’, 2H), 7.14 (s, 1H), 6.95 (d, J¼ 8.2 Hz, 1H), 3.67 (br s, 4H),
3.33 (br s), 2.67 (s, 3H), 2.61–2.56 (m, 4H), 2.38 (s, 3H); 13C NMR
(75MHz, DMSO-d6) d 193.17, 168.4, 144.8, 135.7, 135.2, 134.8,

131.5, 129.5, 129.1, 125.1, 123.5, 121.2, 112.7, 111.6, 53.14, 53.14,
52.9, 21.7, 15.7. IR (KBr): 3225, 2793, 2358, 1609, 1442, 1261, 864
�max/cm

�1. MS (ESI) m/z: 410 [MþH]þ. Anal. Calcd. for C23H24

ClN3O2: C, 67.39; H, 5.90; N, 10.25; found C, 67.11; H, 6.12;
N, 10.54.

2.1.7. 1-(2,6-Dimethyl-1H-indol-3-yl)-2-(4-(4-methoxybenzoyl)piper-
azin-1-yl)ethan-1-one (12)
Yellow solid; yield 53%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 219.9–220.8 �C.; 1H NMR (300MHz, DMSO-d6) d 11.70 (br s,
NH), 7.85 (d, J¼ 8.2 Hz, 1H), 7.38 (br d, AA’XX’, 2H), 7.14 (s, 1H),
6.99–6.94 (m, 3H), 3.79 (br d, 3H), 3.67 (br s, 2H), 3.51 (br s, 4H)
2.67 (s, 3H), 2.58 (br s, 4H), 2.38 (s, 3H); 13C NMR (75MHz, DMSO-
d6) d 192.8, 169.5, 144.6, 136.5, 135.7, 131.5, 130.0, 129.0, 127.5,
125.1, 123.4, 121.2, 112.8, 111.6, 66.9, 55.8, 53.2, 53.1, 21.7, 15.7; IR
(KBr): 3235, 3003, 2807, 1613, 1463, 1253, 977 �max/cm

�1; MS (ESI)
m/z: 406 [MþH]þ. Anal. Calcd. for C24H27N3O3: C, 71.09; H, 6.71;
N, 10.36; found C, 71.10; H, 6.75; N, 10.32.

2.1.8. 4-(4-(2-(2,6-Dimethyl-1H-indol-3-yl)-2-oxoethyl)piperazine-1-
carbonyl)benzonitrile (13)
Yellow solid; yield 23%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 243.9–244.8 �C. 1H NMR (300MHz, DMSO-d6) d 11.70 (br s,
NH), 7.92–7.84 (m, 3H), 7.58 (br d, AA’XX’, 2H), 7.15 (s, 1H), 6.96 (br
d, 1H), 3.68 (br s, 4H), 3.29 (br s, 2H), 2.67 (s, 3H), 2.51 (br s, 4H),
2.38 (s, 3H); 13C NMR (75MHz, DMSO-d6) d 192.5, 166.3, 143.2,
139.4, 134.1, 131.6, 129.9, 126.8, 123.5, 121.9, 119.6, 117.4, 111.2,
111.1, 110.1, 65.1, 51.7, 51.2, 20.1, 14.1; IR (KBr): 3410, 3254, 2816,
2790, 2233, 1609, 1454, 1291, 979 �max/cm

�1; MS (ESI) m/z:
401[MþH]þ. Anal. Calcd. for C24H24N4O2: C, 71.98; H, 6.04; N,
13.99; found C, 72.13; H, 6.23; N, 14.08.

2.1.9. 1-(2,6-Dimethyl-1H-indol-3-yl)-2-(4-(thiophene-2-carbonyl)pi-
perazin-1-yl)ethan-1-one (14)
Yellow solid; yield 29%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 200.3–201.2 �C; 1H NMR (300MHz, DMSO-d6) d 11.74 (br s,
NH), 7.86 (d, J¼ 8.2 Hz, 1H), 7.76 (br d, 1H), 7.41–7.40 (m, 1H),
7.15–7.10 (m, 2H), 6.96 (d, J¼ 8.2 Hz, 1H), 3.75–3.67 (m, 4H), 3.37
(br s, 2H) 2.68 (s, 3H), 2.62 (s, 4H), 2.38 (s, 3H); 13C NMR (75MHz,
DMSO-d6) d 192.8, 167.8, 144.7, 137.8, 135.7, 131.5, 130.0, 129.6,
127.7, 125.1, 124.1, 123.4, 121.2, 112.8, 111.6, 66.7, 53.3, 21.7, 15.7;
IR (KBr): 3270, 2927, 2793, 1642, 1454, 1261, 809 �max/cm

�1; MS
(ESI) m/z: 382[MþH]þ; Anal. Calcd. for C21H23N3O2S: C, 66.12; H,
6.08; N, 11.01; found C, 66.23; H, 6.26; N, 10.93.

2.1.10. 1-(2,6-Dimethyl-1H-indol-3-yl)-2-(4-nicotinoylpiperazin-1-
yl)ethan-1-one (15)
Yellow solid; yield 39%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 216.2–216.8 �C; 1H NMR (300MHz, DMSO-d6) d 11.70 (br s,
NH), 8.65–8.61 (m, 2H), 7.87–7.82 (m, 2H), 7.50–7.45 (m, 1H), 7.15
(s, 1H), 6.95 (br d, 1H), 3.68 (br s, 4H), 3.37 (br s, 2H), 2.67 (s, 3H),
2.56 (br s, 4H), 2.37 (s, 3H); 13C NMR (75MHz, DMSO-d6) d 192.6,
167.2, 151.0, 148.1, 144.7, 135.7, 135.4, 132.3, 131.5, 125.1, 124.1,
123.5, 121.2, 116.2, 111.6, 66.7, 53.4, 52.9, 21.7, 15.7; IR (KBr): 3414,
3213, 2828, 1621, 1454, 1267, 1301, 817 �max/cm

�1; MS (ESI) m/z:
377 [MþH]þ; Anal. Calcd. for C22H24N4O2: C, 70.19; H, 6.43; N,
14.88; found C, 70.21; H, 6.44; N, 14.73.
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2.1.11. 1-(2,6-Dimethyl-1H-indol-3-yl)-2-(4-(2-methylbenzoyl)pipera-
zin-1-yl)ethan-1-one (16)
Yellow solid; yield 41%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 200.5–201.6 �C; 1H NMR (300MHz, DMSO-d6) d 11.70 (br s,
NH), 7.85 (d, J¼ 8.2 Hz, 1H), 7.31–7.27 (m, 3H), 7.26–7.24 (m, 2H),
7.15 (d, 1H), 3.69 (br s, 2H), 3.34 (br s, 2H), 3.15 (br s, 2H), 2.67 (s,
3H), 2.51 (br s, 4H), 2.44 (s, 3H), 2.38 (s, 3H); 13C NMR (75MHz,
DMSO-d6) d 192.6, 169.0, 144.7, 135.7, 134.2, 131.8, 131.5, 130.7,
129.2, 126.4, 126.2, 123.4, 121.2, 112.8, 66.8, 53.5, 53.0, 46.8, 41.4,
21.7, 19.2, 15.7; IR (KBr): 3431, 3221, 2919, 2797, 1615, 1454, 1257,
748 �max/cm

�1; MS (ESI) m/z: 390 [MþH]þ. Anal. Calcd. for
C24H27N3O2: C, 74.01; H, 6.99; N, 10.79; found C, 74.01; H, 7.01;
N, 10.63.

2.1.12. 1-(2,6-Dimethyl-1H-indol-3-yl)-2-(4-(3-methoxybenzoyl)pi-
perazin-1-yl)ethan-1-one (17)
Yellow solid; yield 32%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 209.8–210.4 �C; 1H NMR (300MHz, DMSO-d6) d 11.71 (br s,
NH), 7.85 (d, J¼ 7.9 Hz, 1H), 7.34 (t, 1H), 7.15 (br s, 1H), 7.02–6.92
(m, 4H), 3.78 (s, 3H), 3.68 (br s, 3H), 3.35 (br s, 3H), 2.67 (br s, 7H),
2.38 (s, 3H); 13C NMR (75MHz, DMSO-d6) d 192.7, 169.1, 159.7,
144.7, 137.9, 135.7, 131.5, 130.2, 125.1, 123.4, 121.2, 119.4, 115.7,
112.7, 111.6, 66.8, 55.8, 53.3, 53.11, 47.4, 21.7, 15.7; IR (KBr): 3131,
3049, 2944, 1651, 1455, 1292, 1130, 968 �max/cm

�1; MS (ESI) m/z:
406 [MþH]þ. Anal. Calcd. for C24H27N3O3: C, 71.09; H, 6.71; N,
10.36; found C, 70.85; H, 6.45; N, 10.76.

2.1.13. 2-(4-(3,4-Difluorobenzoyl)piperazin-1-yl)-1-(2,6-dimethyl-1H-
indol-3-yl)ethan-1-one (18)
Yellow solid; yield 27%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 233.8–235.0 �C; 1H NMR (300MHz, DMSO-d6) d 11.71 (br s,
NH), 7.85 (d, J¼ 7.9 Hz, 1H), 7.56–7.47 (m, 2H), 7.28 (br s, 1H), 7.15
(s, 1H), 6.96 (d, J¼ 7.9 Hz, 1H), 3.68 (br s, 2H), 3.33 (br s, 2H), 2.67
(s, 3H), 2.51 (br s, 6H), 2.38 (s, 3H); MS (ESI) m/z: 412 [MþH]þ; IR
(KBr): 3252, 2919, 2795, 1618, 1469, 1286, 1046, 980 �max/cm

�1;
MS (ESI) 412 [MþH]þ. Anal. Calcd. for C23H23F2N3O2: C, 67.14; H,
5.63; N, 10.21; found C, 67.43; H, 5.79; N, 10.59.

2.1.14. 2-(4-(3-Chlorobenzoyl)piperazin-1-yl)-1-(2,6-dimethyl-1H-
indol-3-yl)ethan-1-one (19)
Yellow solid; yield 32%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 222.3–223.5 �C; 1H NMR (300MHz, CDCl3) d 9.42 (br s, NH),
7.71 (d, J¼ 7.9 Hz, 1H), 7.40–7.25 (m, 4H), 7.04 (d, J¼ 8.2 Hz, 2H),
3.85 (br s, 4H), 3.47 (br s, 2H), 2.80 (br s, 1H), 2.68 (br s, 6H), 2.40
(s, 3H); 13C NMR (75MHz CDCl3,) d 192.5, 169.0, 144.7, 137.5,
135.3, 134.7, 132.3, 130.0, 127.3, 125.2, 124.0, 123.7, 120.6, 112.8,
111.4, 67.0, 53.7, 53.7, 29.6, 21.5, 15.7; IR (KBr): 3264, 2916, 2795,
1646, 1454, 1256, 978, 809 �max/cm

–1; MS (ESI) m/z: 410 [MþH]þ.
Anal. Calcd. for C23H24ClN3O2: C, 67.39; H, 5.90; N, 10.25; found C,
67.38; H, 5.90; N, 10.24.

2.1.15. 1-(2,6-Dimethyl-1H-indol-3-yl)-2-(4-(4-methylbenzoyl)pipera-
zin-1-yl)ethan-1-one (20)
Yellow solid; yield 48%; column eluants: EtOAc, EtOAc/MeOH 9:1;
m.p.: 230.9–231.2 �C; 1H NMR (300MHz, DMSO-d6) d 11.71 (br s,
NH), 7.86–7.82 (m, 1H), 7.31–7.23 (m, 4H), 7.15 (s, 1H), 6.96 (d,
J¼ 7.9 Hz, 1H), 3.69 (br s, 2H), 3.35 (br s, 4H), 2.67 (s, 3H), 2.51. IR
(KBr): 3228, 2915, 2792, 1607, 1454, 1260, 979 �max/cm

�1; MS (ESI)

m/z: 390 [MþH]þ; Anal. Calcd. for C24H27N3O2: C, 74.01; H, 6.99;
N, 10.79; found C, 74.12; H, 7.02; N, 10.79.

2.1.16. 2-(4-(Cyclopentanecarbonyl)piperazin-1-yl)-1-(2,6-dimethyl-
1H-indol-3-yl)ethan-1-one (21)
Brown oil; yield 61%; column eluants: EtOAc, EtOAc/MeOH 9:1; 1H
NMR (300MHz, CDCl3) d 9.00 (br s, NH), 7.73 (d, J¼ 8.2 Hz, 1H),
7.26 (br d, 1H), 7.12 (s, 1H), 7.05 (d, J¼ 8.2 Hz, 1H), 3.83 (s, 2H),
3.75 (br s, 2H), 3.63 (br s, 2H), 2.80–2.71 (m, 7H), 2.45 (s, 3H),
1.92–1.46 (m, 7H); IR (KBr): 3253, 2944, 2862, 1650, 1620, 1455,
1234, 957 �max/cm

�1; MS (ESI) m/z: 368 [MþH]þ; Anal. Calcd. for
C22H29N3O2: C, 71.90; H, 7.95; N, 11.43; found C, 72.23; H, 8.31;
N, 11.32.

2.1.17. 1-(4-(2-(2,6-Dimethyl-1H-indol-3-yl)-2-oxoethyl)piperazin-1-
yl)heptan-1-one (22)
Brown oil; yield 76%; column eluants: EtOAc, EtOAc/MeOH 9:1; 1H
NMR (300MHz, CDCl3) d 10.25 (br s, NH), 7.68 (d, J¼ 8.2 Hz, 1H),
7.08 (s, 1H), 7.00 (d, J¼ 7.9 Hz, 1H), 3.83 (s, 2H), 3.73 (br s, 2H),
3.56 (br s, 2H), 2.77–2.71 (m, 3H), 2.62 (s, 3H), 2.38 (s, 3H),
2.32–2.27 (m, 5H), 1.59–1.54 (m, 2H), 1.26 (br s, 4H), 0.85 (br t, 3H);
13C NMR (75MHz, CDCl3) d 191.7, 172.4, 145.4, 135.5, 132.1, 124.0,
123.6, 120.4, 112.4, 111.6, 66.2, 53.3, 53.1, 45.3, 41.2, 34.5, 31.6,
28.9, 25.0, 22.5, 21.5, 15.6, 14.1; IR (KBr): 2927, 2857, 1731, 1645,
1455, 1434, 1234, 668 �max/cm

�1; MS (ESI) m/z: 384 [MþH]þ;
Anal. Calcd. for C23H33N3O2: C, 72.03; H, 8.67; N, 10.96; found C,
72.03; H, 8.73; N, 11.21.

2.2. Cell lines

Madin-Darby canine kidney (MDCK) cells stably expressing One
Strep Tag DGKa (OST-DGKa) were prepared by infecting MDCK
cells with a vector expressing an inducible OST tagged DGKa con-
structs17. MDCK cells infected with empty vector were used as
controls. MDCK cells were cultured in MEM (minimal essential
medium) with 5% FBS (foetal bovine serum) and 1% antibiotic–an-
timycotic solution. Routinely, cells were splitted every 3–4 days
with trypsin–EDTA 0.25% in standard 100mm dishes.

Human embryonic kidney 293T cells (10 cm2 plates) were cul-
tured in RPMI with 10% FBS and 1% penicillin/streptomycin and
cultures were maintained by splitting them for every 2–3 days
using trypsin–EDTA 0.25%.

Michigan Cancer Foundation 7 (MCF7) cells were cultured in
DMEM with 10% FBS þ 1% penicillin/streptomycin and cultures
were maintained by splitting them for every 2–3 days using
trypsin–EDTA 0.25%.

2.3. Primary cells

PBL were isolated from healthy anonymous human donors by
Ficoll-Paque PLUS (GE Healthcare, Chicago, IL) density gradient
centrifugation, washed, and resuspended at 2� 106 cell/mL in
RPMI-GlutaMAX containing 10% heat inactivated FCS, 2mM glu-
tamine, and 100U/mL of penicillin and streptomycin. T cells were
activated with 1 mg/mL anti-CD3 (UCHT1) and anti-CD28 (clone
CD28.2) antibodies. After three days, activated T cells were
washed and cultured in medium additionated of 100 IU/mL rhIL-2
(Peprotech, Rocky Hill, NJ) at 1.2� 106 cells/mL for �7 days by
changing media for every 2–3 days.

Human monocytes were isolated from healthy anonymous
human buffy coats (provided by the Transfusion Service of
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Ospedale Maggiore della Carit�a, Novara, Italy) by the standard
technique of dextran sedimentation and Histopaque (density ¼
1.077 g cm3, Sigma-Aldrich, Milano, Italy) gradient centrifugation
(400�g, 30min, room temperature) and recovered by fine suction
at the interface, as described previously32. Purified monocytes
populations were obtained by adhesion (90min, 37 �C, 5% CO2) in
serum-free RPMI 1640 medium (Sigma-Aldrich, Milano, Italy) sup-
plemented with 2mM glutamine and antibiotics. Cell viability (try-
pan blue dye exclusion) was usually >98%.

2.4. Preparation of DGKa enriched homogenates

Large cultures of MDCK cells for enzyme preparation were done
by plating 5� 106 cells in 245mm2 dishes. Once they reached
nearly 70% confluence, cells were treated with doxycycline (1 mg/
mL, two days). After two days of treatment, each plate was
washed in cold PBS and cells homogenised in 5mL of homogen-
ate buffer (25mM Hepes (pH 8), 20% glycerol, 135mM NaCl, 5mM
ethylenediaminetetraacetic acid (EDTA), 1mM ethylene glycol-bis(-
beta-aminoethyl ether)-N,N,N0,N0-tetraacetic acid (EGTA), 1mM
sodium orthovanadate, and protease inhibitor cocktail) for each
dish. Cells were collected with a rubber scraper, homogenised by
passing them through a 29G-needle syringe 20 times and stored
in aliquots at –80 �C. Presence of OST-DGKa was confirmed by
western blotting and enzyme assay, transduced DGKa has an
activity >100 folds the endogenous DGK.

2.5. Preparation of DGKf and DGKh enriched homogenates

293T cells were transiently transfected with indicated DGK isoform
plasmid DNA using Lipofectamine 3000, Invitrogen (Carlsbad, CA).
Forty eight hours after transfection, cells were harvested and
homogenised with a 29G-needle using 500 mL of homogenate
buffer for each dish and immediately stored in aliquots at –80 �C.
Cells transfected with empty vector were used as controls, overex-
pressed DGK has an activity >50 folds the endogenous.

2.6. DGK assay

Essentionally, the same procedure was followed as reported previ-
ously in Velnati et al.9 In brief, DGK activity was assayed by meas-
uring initial velocities (5min at 27 �C) in presence of saturating
substrate concentrations. Reaction conditions: 0.9 mg/mL 1,2-dio-
leoyl-sn-glycerol, 5mM ATP, 0.01 mCi/mL [c32P]-ATP, 1mM sodium
orthovanadate, 10mM MgCl2, 1.2mM EGTA in 7.5mM Hepes pH
812. Reaction mixture is assembled mixing enzyme (24.5 mL of
homogenate), 100� inhibitor or DMSO (0.5 mL), 5� ATP solution
(10 mL of 25mM ATP, 0.05 mCi/mL [c32P]-ATP (Perkin-Elmer, Milan,
Italy), 5mM sodium orthovanadate, 50mM MgCl2), and 3.3� DAG
solution (15 mL of 3 mg/mL 1,2-dioleoyl-sn-glycerol resuspended by
sonication in 4mM EGTA in 25mM Hepes pH 8). The reaction was
stopped after 5min by adding 200 mL of freshly prepared 1 M HCl
and lipid was extracted by adding 200 mL of CH3OH:CHCl3 1:1
solution and vortexing for 1min. The two phases were separated
by centrifugation (12,000 RCF for 2min). Twenty-five microlitres of
the lower organic phase was spotted in small drops on silica TLC
plates. TLC was run 10 cm and dried before radioactive signals
were detected by GS-250 molecular imager and was quantified by
quantity one (Bio-Rad, Hercules, CA) software assuring the absence
of saturated spots.

Percentage residual activity was calculated as follows: (OST-
DGKa homogenate with inhibitor – vector homogenate)/(OST-
DGKa homogenate with DMSO – vector homogenate)�100.

2.7. Superoxide anion (O22) production

All the experiments were performed in triplicate using cells iso-
lated from each single donor.

Monocytes (250,000 cells/well) were treated for 1 h with the
indicated drugs (10mM) with or without serotonin (1 mM). Then,
cells were stimulated with phorbol 12-myristate 13-acetate (PMA;
Sigma-Aldrich, Milano, Italy) 1 mM for 30min. PMA is a well-known
stimulus that induces a strong and significant respiratory burst via
PKC activation33. Superoxide anion production was then evaluated
by the superoxide dismutase (SOD)-sensitive cytochrome C (CytC)
reduction assay and expressed as nmoles CytC reduced/106 cells/
30min, using an extinction coefficient of 21.1mM. To avoid inter-
ference with spectrophotometrical recordings, cells were incu-
bated with RPMI 1640 without phenol red, antibiotics, and FBS.

2.8. RICD assay in SAP silenced T cells

Activated human PBLs were transfected with 200pmol of siRNA oli-
gonucleotides specific for the target protein (Stealth Select siRNA;
Life Technologies, Carlsbad, CA) or a non-specific control oligo (Life
Technologies, Carlsbad, CA). Transient transfections were performed
using Amaxa nucleofector kits for human T cells (Lonza, Basel,
Switzerland) and the Amaxa Nucleofector II or 4D systems (pro-
grammes T-20 or EI-115). Cells were cultured in IL-2 (100 IU/mL) for
four days to allow target gene knockdown. Knockdown efficiency
was periodically evaluated by Western blotting.

Non-specific Stealth RNAi Negative Control Duplexes (12935-300,
Life Technologies, Carlsbad, CA) were used as a negative control.

siRNA SAP: sense strand UGUACUGCCUAUGUGUGCUGUAUCA,
antisense strand UGAUACAGCAGACAUAGGCAGUACA.

To test restimulation induced cell death, activated T cells (105

cells/well) were plated in triplicate in 96-well round-bottom plate and
treated with anti-CD3 (clone OKT3) (10ng/mL) in RPMI-GlutaMAX
supplemented with 100 IU/mL rhIL-2 for 24h. In these assays, inhibi-
tors (10mM) were added 30min before the restimulation with OKT3.
24h after treatment, cells were stained with 20ng/mL propidium iod-
ide and collected for a constant time of 30 s per sample on Attune
Nxt Flow Cytometer (Thermo Fisher Scientific, Waltham, MA). Cell
death is expressed as % cell loss and calculated as:

% cell loss ¼ 1� number of viable cells in sample
number of viable cells in control

� �
� 100

� �

Results were expressed as mean± standard error of the mean
(SEM). We always compared controls and SAP silenced lympho-
cytes from the same donors as there is a large individual variabil-
ity in RICD sensitivity.

2.9. Migration assays

Cell migration assays were performed using the Culture-Insert 2
well in m-Dish (ibidi GmbH, Martinsried, Germany).

Briefly, 25,000 MCF7 cells were plated in each well and cultured
for 24h. The day after, the culture insert was removed and the cells
were washed with PBS before treating them with respective DGKa
inhibitors (10mM) or DMSO for 15 h in complete medium (DMEM
10% FBS þ 1% penicillin/streptomycin), while medium without FBS
was used as a negative control for migration.
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Phase-contrast pictures were taken immediately after treatment
(0 h) and after 15 h under 5� magnification.

Finally, wound areas were determined using ImageJ software
(NIH, , Bethesda, MD). Wound reduction was calculated by using
the following formula: (wound area at 15 h/wound at 0 h)�100,
the values obtained were expressed as the percentage of wound
area compared to the initial area.

2.10. Quantification and statistical analysis

Data for the screen on OST-DGKa homogenates are the mean of
duplicates. The compounds showing inhibitory activity in this
assay were tested >4 times and the mean± SEM is reported.

To calculate IC50 values of active inhibitors, the inhibitor activ-
ity was measured at least three times at 0.1, 1.0, 10.0, and
100.0 mM concentration. Data were analysed using [inhibitor] vs.
normalised response parameters with least square [ordinary] curve
fitting method in GraphPad PRISM 8.0 software (GraphPad
Software, La Jolla, CA) mentioning 95% confidence interval and
IC50 values always greater than 0.0. Graph shows the mean± SEM
of inhibitor activity at the indicated concentration. In all the
experiments, the data were normalised with the controls.

Evaluation of in vitro assays across multiple treatments (RICD),
SOD-sensitive CytC reduction assay, migration assays were

analysed by using one-way ANOVA with multiple comparisons cor-
rection using GraphPad PRISM 8.0 software (GraphPad Software,
La Jolla, CA). Error bars are described in figure legends as ± SEM
or ± SD where appropriate. A single, double, triple and four aster-
isk denotes significance of a p value �0.05, �0.01, �0.001, and
�0.0001 respectively in all experiments.

2.11. Pharmacophoric model

A representative 3D structure of each compound was generated
using OMEGA2 software34–36. The generated file was used to gen-
erate a pharmacophore model with the Pharmagist web server
(bioinfo3d.cs.tau.ac.il/PharmaGist/)37.

3. Results

3.1. Chemistry

At the beginning, we purchased 14 analogues of Amb639752 by
vendors (Figure 3), while one analogue (2), being not commer-
cially available, was synthesised (see Supplementary material). All
the compounds were evaluated for their inhibitory activity on
DGKa at a concentration of 100mM (Table 1).

Figure 3. First set of compounds tested for their inhibitory activity on DGKa.
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Each inhibitor was tested in duplicate at least once, and DGKa
activity was expressed as percentage of residual DGKa activity
compared to DMSO control in the same assay. Assay uses OST-
DGKa overexpressing cell lysates in presence of saturating exogen-
ous DAG and ATP. We considered R59022 (commercially available)
and the lead compound Amb63975230 as our reference mole-
cules. As expected, our reference inhibitors R59022 and
Amb639752 featured 73% and 96% inhibition respectively, con-
firming the quality of data obtained.

This first screening showed us how Amb639752 exhibits a rigid
structure activity relationship. Indeed, both the methyl groups on
the 2,6 position of indole are mandatory, the NH indole cannot be
alkylated as well as ramifications on the alkyl chain are detrimen-
tal. We then focussed our attention on furan ring knowing its
intrinsic toxicity via metabolic activation38. Unfortunately, there
were no analogues available by vendors. Our first goal was to
replace the furan moiety with the phenyl ring, investigating two
different synthetic pathways.

In the first one, the commercially available 2,6-dimethyl-1H-
indole 3 was acylated with 2-chloroacetyl chloride 4, in the pres-
ence of DBU in dichloroethane39 to give the derivative 5 90%
yield. Then, the acylated compound 5 was reacted with N-Boc
piperazine in the presence of potassium carbonate and potassium
iodide to afford the piperazinic derivative 6 in 63% yield. Boc
deprotection with trifluoroacetic acid, followed by coupling with
benzoic acid using the condensing agent EDCI afforded the final
compound 8 (Scheme 1).

In the second synthetic strategy, we initially coupled the ben-
zoic acid with N-Boc piperazine in the presence of EDCI to give
piperazinic derivative 9 in 49% yield. Boc deprotection gave in
quantitative yield the compound 10. Due to its high aqueous
solubility, solvent was evaporated and the crude as trifluoroace-
tate salt was directly used for the next step, where it was reacted
with the acylated indole 5 to give the final compound 8 in 25%
yield (Scheme 2) (see Supplementary material for full syn-
thetic details).

Overall yield calculation was 11% for both strategies, but with
the first route it was possible to use a common synthetic inter-
mediate 7 which can be coupled with different carboxylic acids.
Furthermore, the second route requires more purification steps.
For this reason, we applied the first route and coupled the
advanced intermediate 7 with 12 different carboxylic acids (Figure
4) to afford compounds 11–22 (Figure 5).

All those molecules were dissolved in DMSO and tested at a
concentration of 100mM for the ability to inhibit DGKa using
equal amounts of DMSO as control. We identified eight com-
pounds capable of reducing OST-DGKa activity similar or superior
to R59022 (Table 2).

3.2. Potency and isoform specificity of active molecules

To measure the inhibitor potency, we determined the IC50 values
for the compounds that resulted active when tested at 100 mM by
measuring the residual OST-DGKa activity over a dose range of
inhibitor concentrations (0.1mM, 1.0mM, 10.0 mM, and 100.0 mM).

Table 1. Inhibitory activity on DGKa (I).

Compound Residue activity at 100 mM

R59022 27
R59949 28
Amb639752 4
Amb758897 67
Amb37496 114
Amb626577 127
Amb1926062 88
Amb94966 196
Amb730692 45
Amb98433 81
Amb18718 135
Amb726054 126
Amb731111 130
Amb22018852 160
Amb687392 115
Amb758592 150
Amb629700 101
2 135

Scheme 1. The first synthetic route for the compound 8.
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For R59022 and Amb639752, we measured IC50 values of
15.2 ± 5.8mM and 6.9 ± 3.0mM respectively which were comparable
to previous reports using similar assay conditions9. Considering
those two as reference/template compounds, we measured the
IC50 values of 8, 11, 12, 13, 14, 16, 19, and 20 as 3.2 ± 1.0,
1.6 ± 0.4, 3.6 ± 1.2, 6.9 ± 2.3, 3.0 ± 1.0, 32.8 ± 11.5, 49.7 ± 31.7, and
1.8 ± 0.4mM, respectively, signifying that their activity is equal or
superior to the template compounds (Figure 6).

Due to their higher IC50 values, we thus decided to exclude 16
and 19 for further experiments. In summary, we recognised six
compounds with equal or superior inhibitory activity compared to
commercially available DGKa inhibitors.

To check the isoform specificity of those active molecules, we
tested them, along with Amb639752, for their ability to inhibit
DGKa, DGKf (the other major DGK isoform expressed in lympho-
cytes), and the more distantly related and widely expressed DGKh.
At the highest concentration of 100 mM, all those molecules
resulted in highly specific against DGKa as like their parent mol-
ecule, Amb639752 by completely inhibit DGKa whereas they do
not have significant effects on DGKf and DGKh apart from 20
which, at the contrary, acts as an activator of DGKh (Figure 7).

3.3. Activity of compounds on serotonin receptors

R59022, R59949, and ritanserin feature a dual activity as DGKa
inhibitors and serotonin receptor antagonists25. Conversely,
Amb639752 was reported as a selective DGKa inhibitor which has
no effects on serotonin activity9. Thus, we investigated whether
the active molecules identified affect serotonin signalling.

To this purpose, we measured the effect of serotonin on
PMA-induced oxidative burst in human monocytes. As previously
shown, 1 mM serotonin reverses the oxidative burst to control
values33. Known serotonin receptor antagonists ritanserin and
ketanserin (10 mM) impaired serotonin action, while pure DGKa
inhibitors such as Amb639752 had no effect (Figure 8). These
data indicate that this assay is sensitive to perturbations in sero-
tonin signalling independently of activity against DGKa.
Interestingly, as like Amb639752, all the newly synthesised
active molecules did not affect serotonin action (Figure 8), indi-
cating that all those molecules are not serotonin receptor
antagonists.

3.4. DGKa inhibitors restore RICD in SAP deficient T cells

Ruffo et al. demonstrated that the defective RICD observed in T
cells from XLP-1 patients was rescued by silencing DGKa expres-
sion or by pre-treatment with DGKa inhibitors R59949 or R590228.
Interestingly, R59022 also showed beneficial effects in an in vivo
model of XLP-1, but due to its poor pharmacological proprieties,
its use in human patients results unlikely. We therefore tested the
effect all those active molecules along with Amb639752 on RICD
sensitivity of SAP-deficient T cells. As additional controls, we also
included ritanserin and ketanserin to evaluate the contribution of
serotonin antagonism to the effects observed.

To evaluate inhibitor efficacy in physiological context, we mod-
elled XLP-1 by silencing SAP in primary peripheral blood T lym-
phocytes (PBLs) and restimulating them with anti-CD3 antibody
(OKT3 10 ng/mL, 24 h). We pre-treated the cells with the indicated

Scheme 2. The second synthetic route for the compound 8.

Figure 4. Carboxylic acids used.
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inhibitors for 30min at a concentration of 10mM8. In control
siRNA-transfected cells, DGKa inhibitors poorly affect RICD, with
Amb639752, 11 and 14 slightly reducing it (Figure 9). Conversely,
DGKa inhibitors significantly rescued the apoptotic defect of SAP-
deficient T cells although not reaching control levels. At 10mM, all
the new molecules showed an efficacy comparable to Amb637952
and ritanserin used as positive reference molecules. Conversely,
the serotonin antagonist ketanserin is inactive, excluding the
involvement of serotonin receptors in rescuing the RICD in SAP-
deficient T cells (Figure 9).

In summary, these data confirm that the newly identified DGKa
inhibitors can rescue RICD susceptibility in T cell models of XLP-1
suggesting a putative use for XLP-1 therapy.

Figure 5. Putative DGKa inhibitors synthesised. In brackets the yield of the coupling reaction with the common intermediate 7.

Table 2. Inhibitory activity on DGKa (II).

Compound Residue activity at 100 mM IC50 (mM)

8 5 3.2
11 6 1.6
12 6 3.6
13 14 6.9
14 6 3.0
15 89 –
16 27 32.8
17 41 –
18 47 –
19 26 49.7
20 3 1.8
21 39 –
22 48 –
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3.5. DGKa inhibitors reduce migration of the cancer cells (MCF7)

Previous studies conducted in our laboratory demonstrated that
the inhibition of DGK activity decreases chemotaxis, proliferation,
migration, and invasion of many cancer cell lines12–14. To evaluate
if our newly synthetised DGKa inhibitors were effective in

impairing cancer cell migration, we measured serum induced
wound healing in MCF7 breast cancer cells in presence of 10 mM
inhibitor. In presence of serum, none of the inhibitors is toxic for
MCF7 cells even after prolonged treatment (data not shown).
After 15 h of treatment, all the newly synthesised active molecules

Figure 6. Dose–response curves for novel DGKa inhibitors. Dose–response of the most active compounds along with their IC50 values. Data from at least three inde-
pendent experiments performed in triplicate.
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equally reduced cell migration when compared to the vehicle
(DMSO) delaying wound closure (Figure 10).

Besides being in good agreement with the notion that DGKa is
required for cancer cells migration, this observation indicates that
our new DGKa inhibitors reduce cancer cell motility, suggesting a
potential utility in a metastasis setting.

3.6. Generation of a pharmacophore hypothesis

From the data obtained, it is possible to identify some key phar-
macophoric points crucial for the biological activity of the Amb
compounds on DGKs namely: (i) a basic nitrogen; (ii) the methyl
groups at the 2 and 6 position of the indole nucleus, and (iii) a
(hetero)aromatic ring. This information allows us to build a four-
point pharmacophoric model represented in Figure 11 superim-
posed with the minimised structure of compound 11. Although,
we are not able to evaluate the importance of the two carbonyl
groups, it represents the first attempts in order to identify the
minimum structural request to interact with DGK catalytic site
considering the molecular structure of the four most active inhibi-
tors discovered to date (Amb639752, ritanserin, R59022, and
R59949). We feel that this model might be useful to identify novel

Figure 7. Isoform specificity of novel DGKa inhibitors. 293T cells were transfected with different DGK isoforms (A – DGKa, B – DGKf, C – DGKh, respectively) or empty
vectors and homogenised. All the molecules were tested at 100lM for their capacity to inhibit the DGK activity of the different isoform homogenates. Data are
means± SEM of at least three independent experiments performed in triplicate.
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compounds active on DGKa through more targeted virtual screen-
ing campaigns, overcoming the current scaffolds.

4. Discussion

As a key component of several signal transduction pathways,
DGKa represent an emerging pharmacological target. We have
demonstrated the efficacy of DGKa inhibitors for XLP-1 treatment8,
while others have proposed them for cancer treatment22 and to
remove immune-checkpoints promoting immune vigilance against
cancer40. Commercially available DGKa inhibitors are limited by
poor specificity25,41 and pharmacokinetic20. The CU-3 molecule
described by other features a noteworthy activity and specificity
but its reactive chemical structure make unlikely an in vivo use30.
With intent of developing molecules suitable for therapeutic use
we selected Amb639752 as a novel inhibitor with remarkable
DGKa activity. Amb639752 also features improved selectivity for
DGKa as it does not affect serotonin signalling9. Despite numerous
efforts a structure of mammalian DGKs is still missing, thus we
decided to explore the structure–activity relationship of this mol-
ecule to improve its activity and pave the way for further develop-
ments. Our efforts allowed us to build a pharmacophoric model
for DGKa inhibitors characterised by three required features. We
also characterised a set of novel compounds with improved IC50
in the low mM range and identified the most profitable synthetic
route for them. The mode of DGKa inhibition by those molecules
is still unknown apart for ritanserin, which binds at the same time
the DGKa catalytic accessory domain and the C1 domain puta-
tively promoting a close inactive conformation41.

The second-generation inhibitors we described in this work
maintain the specificity of Amb639752 as they not affect DGKf,
the predominant isoform of lymphocytes42 and the broadly
expressed DGKh43. Those DGKa inhibitors are active in a lympho-
cyte based XLP-1 assay and in a cancer cell migration assay, hold-
ing the promise for a potential therapeutic application. However,
their efficacy is still to be determined in in vivo models of disease
where some of the parental compounds showed efficacy but poor
pharmacokinetic8,20.
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